Abstract This work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado–VWS relationship, these data are categorized by both 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear-right quadrant. Consistent with these patterns, dropsondes and coastal radiosondes show that the downshear-right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity farther inland, these kinematic conditions are even more favorable in inland environments within the downshear-right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind field strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland. 
                        more » 
                        « less   
                    
                            
                            Factors Affecting the Weakening Rate of Tropical Cyclones over the Western North Pacific
                        
                    
    
            Abstract In this study, based on the 6-hourly tropical cyclone (TC) best track data and the ERA-Interim reanalysis data, statistical analyses as well as a machine learning approach, XGBoost, are used to identify and quantify factors that affect the overwater weakening rate (WR) of TCs over the western North Pacific (WNP) during 1980–2017. Statistical analyses show that the TC rapid weakening events usually occur when intense TCs cross regions with a sharp decrease in sea surface temperature (DSST) with relatively faster eastward or northward translational speeds, and move into regions with large environmental vertical wind shear (VWS) and dry conditions in the upshear-left quadrant. Results from XGBoost indicate that the relative intensity of TC (TC intensity normalized by its maximum potential intensity), DSST, and VWS are dominant factors determining TC WR, contributing 26.0%, 18.3%, and 14.9% to TC WR, and 9, 5, and 5 m s−1 day−1 to the variability of TC WR, respectively. Relative humidity in the upshear-left quadrant of VWS, zonal translational speed, divergence at 200 hPa, and meridional translational speed contribute 12.1%, 11.8%, 8.8%, and 8.1% to TC WR, respectively, but only contribute 2–3 m s−1 day−1 to the variability of TC WR individually. These findings suggest that the improved accurate analysis and prediction of the dominant factors may lead to substantial improvements in the prediction of TC WR. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1834300
- PAR ID:
- 10216229
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 148
- Issue:
- 9
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 3693 to 3712
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Accurate prediction of tropical cyclone (TC) intensity is quite challenging due to multiple competing processes among the TC internal dynamics and the environment. Most previous studies have evaluated the environmental effects on TC intensity change from both internal dynamics and external influence. This study quantifies the environmental effects on TC intensity change using a simple dynamically based dynamical system (DBDS) model recently developed. In this simple model, the environmental effects are uniquely represented by a ventilation parameterB, which can be expressed as multiplicative of individual ventilation parameters of the corresponding environmental effects. Their individual ventilation parameters imply their relative importance to the bulk environmental ventilation effect and thus to the TC intensity change. Six environmental factors known to affect TC intensity change are evaluated in the DBDS model using machine learning approaches with the best track data for TCs over the North Atlantic, central, eastern, and western North Pacific and the Statistical Hurricane Intensity Prediction Scheme (SHIPS) dataset during 1982–2021. Results show that the deep-layer vertical wind shear (VWS) is the dominant ventilation factor to reduce the intrinsic TC intensification rate or to drive the TC weakening, with its ventilation parameter ranging between 0.5 and 0.8 when environmental VWS between 200 and 850 hPa is larger than 8 m s−1. Other environmental factors are generally secondary, with their respective ventilation parameters over 0.8. An interesting result is the strong dependence of the environmental effects on the stage of TC development.more » « less
- 
            Abstract Previous studies have investigated how the environmental vertical wind shear (VWS) may trigger the asymmetric structure in an initially axisymmetric tropical cyclone (TC) vortex and how TC intensity changes in response. In this study, the possible effect of the initial vortex asymmetric structure on the TC intensity change in response to an imposed environmental VWS is investigated based on idealized full‐physics model simulations. Results show that the effect of the asymmetric structure in the initial TC vortex can either enhance or suppress the initial weakening of the TC in response to the imposed environmental VWS. When the initial asymmetric structure is in phase of the VWS‐induced asymmetric structure, the TC weakening will be enhanced and vice versa. Our finding calls for realistic representation of initial TC asymmetric structure in numerical weather prediction models and observations to better resolve the asymmetric structure in TCs.more » « less
- 
            In this study, the performance of three exponential decay models in estimating intensity change of tropical cyclones (TCs) after landfall over China is evaluated based on the best-track TC data during 1980–2018. Results indicate that the three models evaluated can reproduce the weakening trend of TCs after landfall, but two of them (M1 and M2) tend to overestimate TC intensity and one (M3) tends to overestimate TC intensity in the first 12 h and underestimate TC intensity afterwards. M2 has the best performance with the smallest errors among the three models within 24 h after landfall. M3 has better performance than M1 in the first 20 h after landfall, but its errors increase largely afterwards. M1 and M2 show systematic positive biases in the southeastern China likely due to the fact that they have not explicitly included any topographic effect. M3 has better performance in the southeastern China, where it was originally attempted, but shows negative biases in the eastern China. The relative contributions of different factors, including landfall intensity, translational speed, 850-hPa moist static energy, and topography, to model errors are examined based on classification analyses. Results indicate that the landfall intensity contributes about 18%, translational speed, moist static energy and topography contribute equally about 15% to the model errors. It is strongly suggested that the TC characteristics and the time-dependent decay constant determined by environmental conditions, topography and land cover properties, should be considered in a good exponential decay model of TC weakening after landfall.more » « less
- 
            null (Ed.)Abstract This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 ms −1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f -plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then re-strengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the non-merging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    