skip to main content


Title: Predator–Prey Interactions Examined Using Lionfish Spine Puncture Performance
Synopsis Puncture mechanics can be studied in the context of predator–prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator’s skin, the target material, during an encounter. To examine predator–prey interactions, we quantified the puncture performance of red lionfish, Pterois volitans, spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper (Mycteroperca bonaci) and the blacktip shark (Carcharhinus limbatus), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damage of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine.  more » « less
Award ID(s):
1941713
NSF-PAR ID:
10216519
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative Organismal Biology
Volume:
3
Issue:
1
ISSN:
2517-4843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A diagnostic characteristic of stingrays in the family Dasyatidae is the presence of a defensive, partially serrated spine located on the tail. We assessed the contribution of caudal spine morphology on puncture and withdrawal performance from two congeneric, co-occurring stingrays, the Atlantic stingray, Hypanus sabinus, and the bluntnose stingray, Hypanus say. Spines exhibited a high degree of morphological variability. Stingray spines were serrated along 50.8% (H. sabinus) or 62.3% (H. say) of their length. Hypanus say had a greater number of serrations along each side of the spine (30.4) compared with H. sabinus (20.7) but the pitch did not differ between species. We quantified spine puncture and withdrawal forces using porcine skin as a model for human skin. Puncture and withdrawal forces did not differ significantly between species, or within H. say, but withdrawal force was greater than puncture force for H. sabinus. We incorporated micro-computed tomography scanning to quantify tissue mineral density and found that for both species, the shaft of the spine was more heavily mineralized than the base, and midway (50%) along the length of the spine was more heavily mineralized than the tip. The mineralization variability along the spine shaft may create a stiff structure that can fracture once embedded within the target tissue and act as an effective predator deterrent. 
    more » « less
  2. Figures Synopsis

    There is an evolutionary arms race between predators and prey. In aquatic environments, predatory fishes often use sharp teeth, powerful bites, and/or streamlined bodies to help capture their prey quickly and efficiently. Conversely, prey are often equipped with antipredator adaptations including: scaly armor, sharp spines, and/or toxic secretions. This study focused on the predator–prey interactions between the armored threestripe cory catfish (Corydoras trilineatus) and juvenile red-bellied piranha (Pygocentrus nattereri). Specifically, we investigated how resistant cory catfish armor is to a range of natural and theoretical piranha bite forces and how often this protection translated to survival from predator attacks by Corydoras. We measured the bite force and jaw functional morphology of P. nattereri, the puncture resistance of defensive scutes in C. trilineatus, and the in situ predatory interactions between the two. The adductor mandibulae muscle in juvenile P. nattereri is robust and delivers an average bite force of 1.03 N and maximum bite force of 9.71 N, yet its prey, C. trilineatus, survived 37% of confirmed bites without any damage. The C. trilineatus armor withstood an average of nine bites before puncture by P. nattereri. Predation was successful only when piranhas bit unarmored areas of the body, at the opercular opening and at the caudal peduncle. This study used an integrative approach to understand the outcomes of predator–prey interactions by evaluating the link between morphology and feeding behavior. We found that juvenile P. nattereri rarely used a maximal bite force and displayed a net predation success rate on par with other adult vertebrates. Conversely, C. trilineatus successfully avoided predation by orienting predator attacks toward their resilient, axial armor and behavioral strategies that reduced the predator's ability to bite in less armored regions of the body.

     
    more » « less
  3. Abstract

    Cleaning symbioses on coral reefs are mutually beneficial interactions between two individuals, in which a ‘cleaner’ removes and eats parasites from the surface of a ‘client’ fish. A suite of behavioural and morphological traits of cleaners signal cooperation with co‐evolved species, thus protecting the cleaner from being eaten by otherwise predatory clients. However, it is unclear whether cooperation between cleaners and predatory clients is innate or learned, and therefore whether an introduced predator might consume, cooperate with or alter the behaviour of cleaners.

    We explored the role of learning in cleaning symbioses by comparing the interactions of native cleaner fishes with both naïve and experienced, non‐native and native fish predators. In so doing, we tested the vulnerability of the predominant cleaners on Atlantic coral reefs, cleaning gobies (Elacatinusspp.), to the recent introduction of a generalist predator, the Indo‐Pacific red lionfish (Pterois volitans).

    Naïve juveniles of both invasive (P. volitans) and native predators (Cephalopholisspp. groupers) initially attacked cleaning gobies and hyperventilated from a putative toxin on the gobies' skin during laboratory experiments. After one to five such encounters, invasive lionfish often approached the cleaner closely, then turned away without striking. Consistent with learned avoidance, invasive lionfish rarely interacted with cleaning gobies in the wild, either antagonistically or cooperatively, and did not affect gobies' abundance. Native predators showed little evidence of learning during early encounters; they repeatedly attacked the cleaner during laboratory experiments and hyperventilated less violently than did lionfish. However, consistent with learned cooperation, native predators rarely antagonised and were frequently cleaned by gobies in the wild.

    We demonstrated that rapid, learned avoidance protects a distasteful cleaning mutualist from an invasive predator. The behavioural plasticity of this invader likely contributes to its success across its invaded range. Additionally, our results suggest that the cleaner's chemical defence most likely evolved as a way to deter predation and reinforce cooperation with naïve individuals of native species.

     
    more » « less
  4. Biological puncture systems use a diversity of morphological tools (stingers, teeth, spines etc.) to penetrate target tissues for a variety of functions (prey capture, defence, reproduction). These systems are united by a set of underlying physical rules which dictate their mechanics. While previous studies have illustrated form–function relationships in individual systems, these underlying rules have not been formalized. We present a mathematical model for biological puncture events based on energy balance that allows for the derivation of analytical scaling relations between energy expenditure and shape, size and material response. The model identifies three necessary energy contributions during puncture: fracture creation, elastic deformation of the material and overcoming friction during penetration. The theoretical predictions are verified using finite-element analyses and experimental tests. Comparison between different scaling relationships leads to a ratio of released fracture energy and deformation energy contributions acting as a measure of puncture efficiency for a system that incorporates both tool shape and material response. The model represents a framework for exploring the diversity of biological puncture systems in a rigorous fashion and allows future work to examine how fundamental physical laws influence the evolution of these systems. 
    more » « less
  5. Abstract

    Teeth tell the tale of interactions between predator and prey. If a dental battery is made up of teeth that look similar, they are morphologically homodont, but if there is an unspecified amount of regional specialization in size or shape, they are morphologically heterodont. These are vague terms with no useful functional implication because morphological homodonty does not necessarily equal functional homodonty. Teeth that look the same may not function the same. Conical teeth are prevalent in fishes, superficially tasked with the simple job of puncture. There is a great deal of variation in the shape and placement of conical teeth. Anterior teeth may be larger than posterior ones, larger teeth may be surrounded by small ones, and patches of teeth may all have the same size and shape. Such variations suggest that conical dentitions might represent a single morphological solution for different functional problems. We are interested in the concept of homodonty and using the conical tooth as a model to differentiate between tooth shape and performance. We consider the stress that a tooth can exert on prey as stress is what causes damage. To create a statistical measure of functional homodonty, stress was calculated from measurements of surface area, position, and applied force. Functional homodonty is then defined as the degree to which teeth along the jaw all bear/exert similar stresses despite changes in shape. We find that morphologically heterodont teeth are often functionally homodont and that position is a better predictor of performance than shape. Furthermore, the arrangement of teeth affects their function, such that there is a functional advantage to having several smaller teeth surrounding a singular large tooth. We demonstrate that this arrangement of teeth is useful to grab, rather than tear, prey upon puncture, with the smaller teeth dissipating large stress forces around the larger tooth. We show that measurements of how shape affects stress distribution in response to loading give us a clearer picture of the evolution of conically shaped teeth.

     
    more » « less