skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predator–Prey Interactions Examined Using Lionfish Spine Puncture Performance
Synopsis Puncture mechanics can be studied in the context of predator–prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator’s skin, the target material, during an encounter. To examine predator–prey interactions, we quantified the puncture performance of red lionfish, Pterois volitans, spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper (Mycteroperca bonaci) and the blacktip shark (Carcharhinus limbatus), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damage of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine.  more » « less
Award ID(s):
1941713
PAR ID:
10216519
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative Organismal Biology
Volume:
3
Issue:
1
ISSN:
2517-4843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A diagnostic characteristic of stingrays in the family Dasyatidae is the presence of a defensive, partially serrated spine located on the tail. We assessed the contribution of caudal spine morphology on puncture and withdrawal performance from two congeneric, co-occurring stingrays, the Atlantic stingray, Hypanus sabinus, and the bluntnose stingray, Hypanus say. Spines exhibited a high degree of morphological variability. Stingray spines were serrated along 50.8% (H. sabinus) or 62.3% (H. say) of their length. Hypanus say had a greater number of serrations along each side of the spine (30.4) compared with H. sabinus (20.7) but the pitch did not differ between species. We quantified spine puncture and withdrawal forces using porcine skin as a model for human skin. Puncture and withdrawal forces did not differ significantly between species, or within H. say, but withdrawal force was greater than puncture force for H. sabinus. We incorporated micro-computed tomography scanning to quantify tissue mineral density and found that for both species, the shaft of the spine was more heavily mineralized than the base, and midway (50%) along the length of the spine was more heavily mineralized than the tip. The mineralization variability along the spine shaft may create a stiff structure that can fracture once embedded within the target tissue and act as an effective predator deterrent. 
    more » « less
  2. Living organisms have evolved various biological puncture tools, such as fangs, stingers, and claws, for prey capture, defense, and other critical biological functions. These tools exhibit diverse morphologies, including a wide range of structural curvatures, from straight cactus spines to crescent-shaped talons found in raptors. While the influence of such curvature on the strength of the tool has been explored, its biomechanical role in puncture performance remains untested. Here, we investigate the effect of curvature on puncture mechanics by integrating experiments with finite element simulations. Our findings reveal that within a wide biologically relevant range, structural curvature has a minimal impact on key metrics of damage initiation or the energies required for deep penetration in isotropic and homogeneous target materials. This unexpected result improves our understanding of the biomechanical pressures driving the morphological diversity of curved puncture tools and provides fundamental insights into the crucial roles of curvature in the biomechanical functions of living puncture systems. 
    more » « less
  3. The integumentary system in animals serves as an important line of defence against physiological and mechanical external forces. Over time, integuments have evolved layered structures (scales, cuticle and skin) with high toughness and strength to resist damage and prevent wound expansion. While previous studies have examined their defensive performance under low-rate conditions, the failure response and damage resistance of these thin layers under dynamic biological puncture remain underexplored. Here, we utilize a novel experimental framework to investigate the mechanics of dynamic puncture in both bilayer structures of synthetic tissue-mimicking composite materials and natural skin tissues. Our findings reveal the remarkable efficiency of a thin outer skin layer in reducing the overall extent of dynamic puncture damage. This enhanced damage resistance is governed by interlayer properties through puncture energetics and diminishes in strength at higher puncture rates due to rate-dependent effects in silicone tissue simulants. In addition, natural skin tissues exhibit unique material properties and failure behaviours, leading to superior damage reduction capability compared with synthetic counterparts. These findings contribute to a deeper understanding of the inherent biomechanical complexity of biological puncture systems with layered composite material structures. They lay the groundwork for future comparative studies and bio-inspired applications. 
    more » « less
  4. Abstract Alternative ecological theories make divergent predictions about the relationship between predators and their prey. If predators exert top‐down ecosystem control, increases in predation should diminish prey abundance and could either diminish or enhance community diversity of prey species. However, if bottom‐up ecosystem controls predominate, predator populations should track underlying variation in prey diversity and abundance, which ultimately should reflect available energy. Past research, both across islands and comparing islands with the mainland, has frequently invoked the importance of predation in regulating lizard abundance and diversity, suggesting an important role of top‐down control when predators are present. However, others have posited a stronger role of food limitation, via competition or bottom‐up forces. If top‐down control predominates, then negative correlations between prey abundance and predator occurrence should emerge within and among islands. Using data from eBird, we inferred landscape‐level presence data for bird species on the islands of Jamaica and Hispaniola. By summing occurrence probabilities of all known anole‐predator birds, we estimated total avian predation pressure and combined these estimates with anole community data from a mark‐recapture study that spanned spatial and climatic gradients on both islands. Avian predators and anole lizards were both affected by climate, with total predator occurrence, anole abundance and anole species richness increasing with mean annual temperature. Anole abundance and predator occurrence showed a curvilinear relationship, where abundance and predator occurrence increased together until predator occurrence became sufficiently high that anole abundance was negatively impacted. This indicates that bottom‐up ecosystem controls drive richness of both anoles and their predators, mitigating the negative effects predators might have on their prey, at least until predator occurrence reaches a threshold. We did not detect consistent evidence of predator occurrence reducing anole community richness. These findings support past research showing that islands with more predators tend to have lower prey abundances, but it does not seem that these top‐down forces are strongly limiting species coexistence. Instead, bottom‐up forces linked with climate may be more important drivers of diversity in both lizards and their avian predators on these islands. 
    more » « less
  5. Claydon, John A. (Ed.)
    Ensuring the accuracy of age estimation in fisheries science through validation is an essential step in managing species for long-term sustainable harvest. The current study used Δ 14 C in direct validation of age estimation for queen triggerfish Balistes vetula and conclusively documented that triggerfish sagittal otoliths provide more accurate and precise age estimates relative to dorsal spines. Caribbean fish samples (n = 2045) ranged in size from 67–473 mm fork length (FL); 23 fish from waters of the southeastern U.S. (SEUS) Atlantic coast ranged in size from 355–525 mm FL. Otolith-based age estimates from Caribbean fish range from 0–23 y, dorsal spine-based age estimates ranged from 1–14 y. Otolith-based age estimates for fish from the SEUS ranged from 8–40 y. Growth function estimates from otoliths in the current study (L ∞ = 444, K = 0.13, t 0 = -1.12) differed from spined-derived estimates in the literature. Our work indicates that previously reported maximum ages for Balistes species based on spine-derived age estimates may underestimate longevity of these species since queen triggerfish otolith-based ageing extended maximum known age for the species by nearly three-fold (14 y from spines versus 40 y from otoliths). Future research seeking to document age and growth population parameters of Balistes species should strongly consider incorporating otolith-based ageing in the research design. 
    more » « less