skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Queen triggerfish Balistes vetula: Validation of otolith-based age, growth, and longevity estimates via application of bomb radiocarbon
Ensuring the accuracy of age estimation in fisheries science through validation is an essential step in managing species for long-term sustainable harvest. The current study used Δ 14 C in direct validation of age estimation for queen triggerfish Balistes vetula and conclusively documented that triggerfish sagittal otoliths provide more accurate and precise age estimates relative to dorsal spines. Caribbean fish samples (n = 2045) ranged in size from 67–473 mm fork length (FL); 23 fish from waters of the southeastern U.S. (SEUS) Atlantic coast ranged in size from 355–525 mm FL. Otolith-based age estimates from Caribbean fish range from 0–23 y, dorsal spine-based age estimates ranged from 1–14 y. Otolith-based age estimates for fish from the SEUS ranged from 8–40 y. Growth function estimates from otoliths in the current study (L ∞ = 444, K = 0.13, t 0 = -1.12) differed from spined-derived estimates in the literature. Our work indicates that previously reported maximum ages for Balistes species based on spine-derived age estimates may underestimate longevity of these species since queen triggerfish otolith-based ageing extended maximum known age for the species by nearly three-fold (14 y from spines versus 40 y from otoliths). Future research seeking to document age and growth population parameters of Balistes species should strongly consider incorporating otolith-based ageing in the research design.  more » « less
Award ID(s):
1755125
PAR ID:
10317452
Author(s) / Creator(s):
;
Editor(s):
Claydon, John A.
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
1
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Claydon, John A. (Ed.)
    Reef fishes support important fisheries throughout the Caribbean, but a combination of factors in the tropics makes otolith microstructure difficult to interpret for age estimation. Therefore, validation of ageing methods, via application of Δ 14 C is a major research priority. Utilizing known-age otolith material from north Caribbean fishes, we determined that a distinct regional Δ 14 C chronology exists, differing from coral-based chronologies compiled for ageing validation from a wide-ranging area of the Atlantic and from an otolith-based chronology from the Gulf of Mexico. Our north Caribbean Δ 14 C chronology established a decline series with narrow prediction intervals that proved successful in ageing validation of three economically important reef fish species. In examining why our north Caribbean Δ 14 C chronology differed from some of the coral-based Δ 14 C data reported from the region, we determined differences among study objectives and research design impact Δ 14 C temporal relationships. This resulted in establishing the first of three important considerations relevant to applying Δ 14 C chronologies for ageing validation: 1) evaluation of the applicability of original goal/objectives and study design of potential Δ 14 C reference studies. Next, we determined differences between our Δ 14 C chronology and those from Florida and the Gulf of Mexico were explained by differences in regional patterns of oceanic upwelling, resulting in the second consideration for future validation work: 2) evaluation of the applicability of Δ 14 C reference data to the region/location where fish samples were obtained. Lastly, we emphasize the application of our north Caribbean Δ 14 C chronology should be limited to ageing validation studies of fishes from this region known to inhabit shallow water coral habitat as juveniles. Thus, we note the final consideration to strengthen findings of future age validation studies: 3) use of Δ 14 C analysis for age validation should be limited to species whose juvenile habitat is known to reflect the regional Δ 14 C reference chronology. 
    more » « less
  2. Abstract Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitats with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod. 
    more » « less
  3. Abstract Otoliths of actinopterygians are calcified structures playing a key role in hearing and equilibrium functions. To understand their morphological diversification, we quantified the shape of otoliths in both lateral and dorsal view from 697 and 323 species, respectively, using geometric morphometrics. We then combined form (i.e. size and shape) information with ecological data and phylogenetically informed comparative methods to test our hypotheses. Initially, the exploration of morphospaces revealed that the main variations are related to sulcus acusticus shape, elongation and lateral curvature. We also found strong integration between otolith and sulcus shape, suggesting that they are closely mirroring each other, reinforcing a shape-dependent mechanism crucial for otolith motion relative to its epithelium and validating the functional significance of otolith morphology in auditory and vestibular processes. After revealing that otolith shape and size retained a low phylogenetic signal, we showed that the disparity of otolith size and shape is decoupled from order age and from the level of functional diversity across clades. Finally, some traits in otolith disparity are correlated with their morphological evolutionary rate and the order speciation rate. Overall, we observed that the pattern of diversification of otoliths across the fish tree of life is highly complex and likely to be multifactorial. 
    more » « less
  4. null (Ed.)
    Synopsis Puncture mechanics can be studied in the context of predator–prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator’s skin, the target material, during an encounter. To examine predator–prey interactions, we quantified the puncture performance of red lionfish, Pterois volitans, spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper (Mycteroperca bonaci) and the blacktip shark (Carcharhinus limbatus), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damage of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine. 
    more » « less
  5. null (Ed.)
    Accurate age data are essential for reliable fish stock assessment. Yet many stocks suffer from inconsistencies in age interpretation. A new approach to obtain age makes use of the chemical composition of otoliths. This study validates the periodicity of recurrent patterns in 25 Mg, 31 P, 34 K, 55 Mn, 63 Cu, 64 Zn, 66 Zn, 85 Rb, 88 Sr, 138 Ba, and 208 Pb in Baltic cod (Gadus morhua) otoliths from tag–recapture and known-age samples. Otolith P concentrations showed the highest consistency in seasonality over the years, with minima co-occurring with otolith winter zones in the known-age otoliths and in late winter – early spring when water temperatures are coldest in tagged cod . The timing of minima differs between stocks, occurring around February in western Baltic cod and 1 month later in eastern Baltic cod; seasonal maxima are also stock-specific, occurring in August and October, respectively. The amplitude in P is larger in faster-growing western compared with eastern Baltic cod. Seasonal patterns with minima in winter – late spring were also evident in Mg and Mn, but less consistent over time and fish size than P. Chronological patterns in P, and to a lesser extent Mg and Mn, may have the potential to supplement traditional age estimation or to guide the visual identification of translucent and opaque otolith patterns used in traditional age estimation. 
    more » « less