skip to main content


Title: Structural Origin of Reversible Li Insertion in Guest‐Free, Type‐II Silicon Clathrates
  more » « less
Award ID(s):
1710017 2004514
NSF-PAR ID:
10236975
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy and Sustainability Research
Volume:
2
Issue:
5
ISSN:
2699-9412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Type II germanium clathrates have recently been investigated for potential applications as anodes in batteries due to their cage-like structures that can accommodate electrochemical insertion of guest ions. To synthesize type II Ge clathrates (Ge136), several experimental routes use thermal or electrochemical desodiation of the Zintl phase compound Na4Ge4. However, the mechanism by which Na atoms are removed from the precursor to form clathrates is not well understood. Herein, we use first-principles density functional theory and nudged elastic band calculations to understand the reaction mechanism and formation energies of the products typically observed in the synthesis, namely, NaδGe136 (0 < δ < 24) type II clathrates and hexagonal phase Na1–xGe3+z. Specifically, we confirm the energetic feasibility of Na vacancy formation in Na4Ge4 and find that the barrier for Na vacancy migration is only 0.37 eV. This relatively low energy barrier is consistent with the ease with which Na4Ge4 can be desodiated to form the products. We also discuss the energetics, sodium migration pathways, and potential electrochemical performance of Ge136 as anode material for Na-ion batteries. Overall, this study highlights how first-principles calculations can be used to understand the synthesis mechanism and desodiation processes in clathrate materials and will help guide researchers in the design and evaluation of new open framework compounds as viable materials for energy storage applications. 
    more » « less
  2. At low guest atom concentrations, Si clathrates can be viewed as semiconductors, with the guest atoms acting as dopants, potentially creating alternatives to diamond Si with exciting optoelectronic and spin properties. Studying Si clathrates with different guest atoms would not only provide insights into the electronic structure of the Si clathrates but also give insights into the unique properties that each guest can bring to the Si clathrate structure. However, the synthesis of Si clathrates with guests other than Na is challenging. In this study, we have developed an alternative approach, using thermal diffusion into type II Si clathrate with an extremely low Na concentration, to create Si clathrate with Li guests. Using time-of-flight secondary-ion mass spectroscopy, X-ray diffraction, and Raman scattering, thermal diffusion of Li into the nearly empty Si clathrate framework is detected and characterized as a function of the diffusion temperature and time. Interestingly, the Si clathrate exhibits reduced structural stability in the presence of Li, converting to polycrystalline or disordered phases for anneals at temperatures where the starting Na guest Si clathrate is quite stable. The Li atoms inserted into the Si clathrate lattice contribute free carriers, which can be detected in Raman scattering through their effect on the strength of Si−Si bonds in the framework. These carriers can also be observed in electron paramagnetic resonance (EPR). EPR shows, however, that Li guests are not simple analogues of Na guests. In particular, our results suggest that Li atoms, with their smaller size, tend to doubly occupy cages, forming “molecular-like” pairs with other Li or Na atoms. Results of this work provide a deeper insight into Li guest atoms in Si clathrate. These findings are also relevant to understanding how Li moves through and interacts with Si clathrate anodes in Li-ion batteries. Additionally, techniques presented in this work demonstrate a new method for filling the Si clathrate cages, enabling studies of a broad range of other guests in Si clathrates. 
    more » « less
  3. Abstract

    The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics.

     
    more » « less
  4. Abstract

    The compositional screening of K‐Zn‐Sb ternary system aided by machine learning, rapid exploratory synthesis using KH salt‐like precursor and in situ powder X‐ray diffraction yielded a novel clathrate type XI K58Zn122Sb207. This clathrate consists of a 3D Zn‐Sb framework hosting K+ions inside polyhedral cages, some of which are reminiscent of known clathrate types while others are unique to this structure type. The complex non‐centrosymmetric structure in the tetragonal space groupwas solved by means of single crystal X‐ray diffraction as a 6‐component twin due to pseudocubic symmetry and further confirmed by high‐resolution synchrotron powder X‐ray diffraction and state‐of‐the‐art scanning transmission electron microscopy. The electron‐precise composition of this clathrate yields narrow‐gapp‐type semiconductor with extraordinarily low thermal conductivity due to displacement or “rattling” of K cations inside oversized cages and as well as to twinning, stacking faults and antiphase boundary defects.

     
    more » « less
  5. Abstract

    The compositional screening of K‐Zn‐Sb ternary system aided by machine learning, rapid exploratory synthesis using KH salt‐like precursor and in situ powder X‐ray diffraction yielded a novel clathrate type XI K58Zn122Sb207. This clathrate consists of a 3D Zn‐Sb framework hosting K+ions inside polyhedral cages, some of which are reminiscent of known clathrate types while others are unique to this structure type. The complex non‐centrosymmetric structure in the tetragonal space groupwas solved by means of single crystal X‐ray diffraction as a 6‐component twin due to pseudocubic symmetry and further confirmed by high‐resolution synchrotron powder X‐ray diffraction and state‐of‐the‐art scanning transmission electron microscopy. The electron‐precise composition of this clathrate yields narrow‐gapp‐type semiconductor with extraordinarily low thermal conductivity due to displacement or “rattling” of K cations inside oversized cages and as well as to twinning, stacking faults and antiphase boundary defects.

     
    more » « less