We designed, fabricated, and characterized a flat multi-level diffractive lens comprised of only silicon with , focal , numerical aperture of 0.371, and operating over the long-wave infrared (LWIR) to 14 µm. We experimentally demonstrated a field of view of 46°, depth of focus , and wavelength-averaged Strehl ratio of 0.46. All of these metrics were comparable to those of a conventional refractive lens. The active device thickness is only 8 µm, and its weight (including the silicon substrate) is less than 0.2 g.
more »
« less
Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime
We experimentally demonstrate long-wavelength-infrared (LWIR) femtosecond filamentation in solids. Systematic investigations of supercontinuum (SC) generation and self-compression of the LWIR pulses assisted by laser filamentation are performed in bulk KrS-5 and ZnSe, pumped by , 9 µm, 10 µJ pulses from an optical parametric chirped-pulse amplifier operating at 10 kHz of repetition rate. Multi-octave SC spectra are demonstrated in both materials. While forming stable single filament, 1.5 cycle LWIR pulses with 4.5 µJ output pulse energy are produced via soliton-like self-compression in a 5 mm thick KrS-5. The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation. This work shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids.
more »
« less
- Award ID(s):
- 1707237
- PAR ID:
- 10143155
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 8
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 2175
- Size(s):
- Article No. 2175
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-gain optical parametric amplification is an important nonlinear process used both as a source of coherent infrared light and as a source of nonclassical light. In this work, we experimentally demonstrate an approach to optical parametric amplification that enables extremely large parametric gains with low energy requirements. In conventional nonlinear media driven by femtosecond pulses, multiple dispersion orders limit the effective interaction length available for parametric amplification. Here, we use the dispersion engineering available in periodically poled thin-film lithium niobate nanowaveguides to eliminate several dispersion orders at once. The result is a quasi-static process; the large peak intensity associated with a short pump pulse can provide gain to signal photons without undergoing pulse distortion or temporal walk-off. We characterize the parametric gain available in these waveguides using optical parametric generation, where vacuum fluctuations are amplified to macroscopic intensities. In the unsaturated regime, we observe parametric gains as large as 71 dB (118 dB/cm) spanning 1700–2700 nm with pump energies of only 4 pJ. When driven with pulse energies , we observe saturated parametric gains as large as 88 dB ( ). The devices shown here achieve saturated optical parametric generation with orders of magnitude less pulse energy than previous techniques.more » « less
-
The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.more » « less
-
Amorphous tantala ( ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist or bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV . A detrimental influence from low energy bombardment on absorption loss and mechanical loss is observed. Low energy bombardment removes excess oxygen point defects, while bombardment introduces defects into the tantala films.more » « less
-
We present the optical and structural characterization of films of , , and doped with a cation ratio around 0.1 grown by reactive sputtering. The addition of as a dopant induces the formation of tantalum suboxide due to the “oxygen getter” property of scandium. The presence of tantalum suboxide greatly affects the optical properties of the coating, resulting in higher absorption loss at . The refractive index and optical band gap of the mixed film do not correspond to those of a mixture of and , given the profound structural modifications induced by the dopant.more » « less
An official website of the United States government
