skip to main content


Title: Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime

We experimentally demonstrate long-wavelength-infrared (LWIR) femtosecond filamentation in solids. Systematic investigations of supercontinuum (SC) generation and self-compression of the LWIR pulses assisted by laser filamentation are performed in bulk KrS-5 and ZnSe, pumped by∼<#comment/>145fs, 9 µm, 10 µJ pulses from an optical parametric chirped-pulse amplifier operating at 10 kHz of repetition rate. Multi-octave SC spectra are demonstrated in both materials. While forming stable single filament, 1.5 cycle LWIR pulses with 4.5 µJ output pulse energy are produced via soliton-like self-compression in a 5 mm thick KrS-5. The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation. This work shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids.

 
more » « less
Award ID(s):
1707237
PAR ID:
10143155
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
8
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 2175
Size(s):
Article No. 2175
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 μm-wavelength Yb:YAG laser at repetition rates up tof=1kHz. Interferograms of the wake generated show that while pulses in a train of repetition ratef=0.1kHzencounter a nearly unperturbed environment, atf=1kHz, a channel with an axial air density hole of∼<#comment/>20%<#comment/>is generated and maintained at all times by the cumulative effect of preceding laser pulses. Measurements atf=1kHzshow that the energy deposited decreases proportional to the air channel density depletion, becoming more pronounced as the repetition rate and pulse energy increase. Numerical simulations indicate that contrary to filaments generated by shorter duration pulses, the electron avalanche is the dominant energy loss mechanism during filamentation with 7 ps pulses. The results are of interest for the atmospheric propagation of joule-level picosecond pulses from Yb:YAG lasers, of which average powers now surpass 1 kW, and for channeling other directed energy beams.

     
    more » « less
  2. We designed, fabricated, and characterized a flat multi-level diffractive lens comprised of only silicon withdiameter=15.2mm, focallength=19mm, numerical aperture of 0.371, and operating over the long-wave infrared (LWIR)spectrum=8µ<#comment/>mto 14 µm. We experimentally demonstrated a field of view of 46°, depth of focus><#comment/>5mm, and wavelength-averaged Strehl ratio of 0.46. All of these metrics were comparable to those of a conventional refractive lens. The active device thickness is only 8 µm, and its weight (including the silicon substrate) is less than 0.2 g.

     
    more » « less
  3. An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of∼<#comment/>430nmwhen pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at∼<#comment/>215nm, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixedCH4−<#comment/>H2−<#comment/>NH3–air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulentCH4−<#comment/>H2−<#comment/>NH3diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

     
    more » « less
  4. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  5. Amorphous tantala (Ta2O5) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assistAr+orAr+/O2+bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eVAr+. A detrimental influence from low energyO2+bombardment on absorption loss and mechanical loss is observed. Low energyAr+bombardment removes excess oxygen point defects, whileO2+bombardment introduces defects into the tantala films.

     
    more » « less