skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variations in stability revealed by temporal asymmetries in contraction of phase space flow
Abstract Empirical diagnosis of stability has received considerable attention, often focused on variance metrics for early warning signals of abrupt system change or delicate techniques measuring Lyapunov spectra. The theoretical foundation for the popular early warning signal approach has been limited to relatively simple system changes such as bifurcating fixed points where variability is extrinsic to the steady state. We offer a novel measurement of stability that applies in wide ranging systems that contain variability in both internal steady state dynamics and in response to external perturbations. Utilizing connections between stability, dissipation, and phase space flow, we show that stability correlates with temporal asymmetry in a measure of phase space flow contraction. Our method is general as it reveals stability variation independent of assumptions about the nature of system variability or attractor shape. After showing efficacy in a variety of model systems, we apply our technique for measuring stability to monthly returns of the S&P 500 index in the time periods surrounding the global stock market crash of October 1987. Market stability is shown to be higher in the several years preceding and subsequent to the 1987 market crash. We anticipate our technique will have wide applicability in climate, ecological, financial, and social systems where stability is a pressing concern.  more » « less
Award ID(s):
1715638
PAR ID:
10217043
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate a model for the dynamics of ellipsoidal microswimmers in an externally imposed, laminar Kolmogorov flow. Through a phase-space analysis of the dynamics without noise, we find that swimmers favor either cross-stream or rotational drift, depending on their swimming speed and aspect ratio. When including noise, i.e., rotational diffusion, we find that swimmers are driven into certain parts of phase space, leading to a nonuniform steady-state distribution. This distribution exhibits a transition from swimmer aggregation in low-shear regions of the flow to aggregation in high-shear regions as the swimmer’s speed, aspect ratio, and rotational diffusivity are varied. To explain the nonuniform phase-space distribution of swimmers, we apply a weak-noise averaging principle that produces a reduced description of the stochastic swimmer dynamics. Using this technique, we find that certain swimmer trajectories are more favorable than others in the presence of weak rotational diffusion. By combining this information with the phase-space speed of swimmers along each trajectory, we predict the regions of phase space where swimmers tend to accumulate. The results of the averaging technique are in good agreement with direct calculations of the steady-state distributions of swimmers. In particular, our analysis explains the transition from low-shear to high-shear aggregation. 
    more » « less
  2. Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts. 
    more » « less
  3. Background: The rise in work zone crashes due to distracted and aggressive driving calls for improved safety measures. While Truck-Mounted Attenuators (TMAs) have helped reduce crash severity, the increasing number of crashes involving TMAs shows the need for improved warning systems. Methods: This study proposes an AI-enabled vision system to automatically alert drivers on collision courses with TMAs, addressing the limitations of manual alert systems. The system uses multi-task learning (MTL) to detect and classify vehicles, estimate distance zones (danger, warning, and safe), and perform lane and road segmentation. MTL improves efficiency and accuracy, making it ideal for devices with limited resources. Using a Generalized Efficient Layer Aggregation Network (GELAN) backbone, the system enhances stability and performance. Additionally, an alert module triggers alarms based on speed, acceleration, and time to collision. Results: The model achieves a recall of 90.5%, an mAP of 0.792 for vehicle detection, an mIOU of 0.948 for road segmentation, an accuracy of 81.5% for lane segmentation, and 83.8% accuracy for distance classification. Conclusions: The results show the system accurately detects vehicles, classifies distances, and provides real-time alerts, reducing TMA collision risks and enhancing work zone safety. 
    more » « less
  4. This study employs physics-informed neural networks (PINNs) to reconstruct multiple flow fields in a transient natural convection system solely based on instantaneous temperature data at an arbitrary moment. Transient convection problems present reconstruction challenges due to the temporal variability of fields across different flow phases. In general, large reconstruction errors are observed during the incipient phase, while the quasi-steady phase exhibits relatively smaller errors, reduced by a factor of 2–4. We hypothesize that reconstruction errors vary across different flow phases due to the changing solution space of a PINN, inferred from the temporal gradients of the fields. Furthermore, we find that reconstruction errors tend to accumulate in regions where the spatial gradients are smaller than the order of 10−6, likely due to the vanishing gradient phenomenon. In convection phenomena, field variations often manifest across multiple scales in space. However, PINN-based reconstruction tends to preserve larger-scale variations, while smaller-scale variations become less pronounced due to the vanishing gradient problem. To mitigate the errors associated with vanishing gradients, we introduce a multi-scale approach that determines scaling constants for the PINN inputs and reformulates inputs across multiple scales. This approach improves the maximum and mean errors by 72.2% and 6.4%, respectively. Our research provides insight into the behavior of PINNs when applied to transient convection problems with large solution space and field variations across multiple scales. 
    more » « less
  5. Abstract Ongoing climate variability and change are increasing the burden of diarrhoeal disease worldwide. Meaningful early warning systems with adequate lead times (weeks to months) are needed to guide public health decision–making and enhance community resilience against health threats posed by climate change. Toward this goal, we trained various machine-learning models to predict diarrhoeal disease rates in Nepal (2002–2014), Taiwan (2008–2019), and Vietnam (2000–2015) using temperature, precipitation, previous disease rates, and El Niño Southern Oscillation phases. We also compared the performance of shallow time-series neural network (NN), Random Forest Regressor, artificial nn, gradient boosting regressor, and long short-term memory–based methods for their effectiveness in predicting diarrhoeal disease burden across multiple countries. We evaluated model performance using a test dataset and assessed the accuracy of predicted diarrhoeal disease incidence rates for the last year of available data in each district. Our results suggest that even in the absence of the most recent disease surveillance data, a likely scenario in most low- and middle-income countries, our NN-based early warning system using historical data performs reasonably well. However, future studies are needed to perform prospective evaluations of such early warning systems in real-world settings. 
    more » « less