Marine heterotrophic
Theory suggests that the ocean’s biological carbon pump, the process by which organic matter is produced at the surface and transferred to the deep ocean, is sensitive to temperature because temperature controls photosynthesis and respiration rates. We applied a combined data-modeling approach to investigate carbon and nutrient recycling rates across the world ocean over the past 15 million years of global cooling. We found that the efficiency of the biological carbon pump increased with ocean cooling as the result of a temperature-dependent reduction in the rate of remineralization (degradation) of sinking organic matter. Increased food delivery at depth prompted the development of new deep-water niches, triggering deep plankton evolution and the expansion of the mesopelagic “twilight zone” ecosystem.
more » « less- PAR ID:
- 10217119
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 371
- Issue:
- 6534
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1148-1152
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bacteria (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015–2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988–2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076–2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5–10% globally, while it increases by 3–5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers. -
Abstract The reliability of paleoproductivity proxies must be determined before assessing the role of the oceanic carbon (C) cycle in affecting past climate changes. We compare paleoproductivity records of newly generated micropaleontological data (benthic foraminiferal accumulation rates, BFAR) to those of existing geochemical data (reactive phosphorus [reactive P] mass accumulation rates [MAR] and biological barium [bio‐Ba] MAR) for the same Paleogene‐aged sediments. Sediments are from the Atlantic (Maud Rise, Ocean Drilling Program Sites 689/690) and the Indian (Kerguelen plateau, Ocean Drilling Program Site 738) sectors of the Southern Ocean. Reactive P MAR, but not bio‐Ba MAR, correlates to varying degree with BFAR for all three sites investigated. Export productivity, delivery of organic C to the seafloor, and organic C burial calculated here using bio‐Ba MAR, BFAR, and reactive P MAR, respectively, for these sites during the Early Paleogene span 2 orders of magnitude (~0.01 to 1 g C·cm−2·kyr−1). Differences in magnitude of reconstructed organic C fluxes are expected because different proxies record different aspects of the biological pump, and these aspects did not behave proportionally similar for all periods. Proxies studied here indicate that transfer efficiency, the fraction of exported organic matter from 100 m that reaches the deep ocean, was low for the Early Paleogene Southern Ocean, similar to today. Despite this, absolute organic carbon burial was similar or higher than today because export productivity was similar or higher. Elevated temperatures may have increased both biological production and respiration in the Early Paleogene Southern Ocean.
-
Abstract Tropical cyclones (hurricanes) generate intense surface ocean cooling and vertical mixing resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean remains unknown. Here we present evidence that hurricanes also impact the ocean's biological pump by enhancing export of labile organic material to the deep ocean. In October 2016, Category 3 Hurricane Nicole passed over the Bermuda Time Series site in the oligotrophic NW Atlantic Ocean. Following Nicole's passage, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30–300% at 1,500 m depth and 30–800% at 3,200 m depth. Mesopelagic suspended particles following Nicole were also enriched in phytodetrital material and in zooplankton and bacteria lipids, indicating particle disaggregation and a deepwater ecosystem response. Predicted climate‐induced increases in hurricane frequency and/or intensity may significantly alter ocean biogeochemical cycles by increasing the strength of the biological pump.
-
Abstract The strength of the biological soft tissue pump in the ocean critically depends on how much organic carbon is produced via photosynthesis and how efficiently the carbon is transferred to the ocean interior. For a given amount of limiting nutrient, phosphate, soft tissue pump would be strengthened if the carbon (C) to phosphorus (P) ratio of sinking organic matter increases as the remineralization length scale of C increases. Here, we present a new data compilation of particle flux stoichiometry and show that C:P of sinking particulate organic matter (POM) in the ocean twilight zone on average is likely to be higher than the C:P ratio of surface suspended POM. We further demonstrate using a physics‐biology coupled global ocean model combined with a theory from first principles that an increase in C:P export flux ratio in the ocean's twilight zone can lead to a considerable drawdown of atmospheric
p CO2. -
null (Ed.)Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmosphericpCO2. Here we extend and calibrate a temperature-dependent representation ofmarine carbon cycling in the cGENIE.muffin Earth system model, intended forboth past and future climate applications. In this, we combine atemperature-dependent remineralisation scheme for sinking organic matterwith a biological export production scheme that also includes a dependenceon ambient seawater temperature. Via a parameter ensemble, we jointlycalibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopicsignature (δ13C) of dissolved inorganic carbon in the oceanwith modern observations. We additionally explore the role of temperature inthe creation and recycling of dissolved organic matter (DOM) and hence itsimpact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version showsa fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact ofaccounting for temperature-dependent remineralisation of POM is in drivinghigher rates of remineralisation in warmer waters, in turn driving a morerapid return of nutrients to the surface and thereby stimulating organicmatter production. As a result, more POM is exported below 80 m but onaverage reaches shallower depths in middle- and low-latitude warmer waterscompared to the standard model. Conversely, at higher latitudes, colderwater temperature reduces the rate of nutrient resupply to the surface andPOM reaches greater depth on average as a result of slower subsurface ratesof remineralisation. Further adding temperature-dependent DOM processeschanges this overall picture only a little, with a slight weakening ofexport production at higher latitudes. As an illustrative application of the new model configuration andcalibration, we take the example of historical warming and briefly assessthe implications for global carbon cycling of accounting for a more completeset of temperature-dependent processes in the ocean. We find that betweenthe pre-industrial era (ca. 1700) and the present (year 2010), in response to asimulated air temperature increase of 0.9 ∘C and an associatedprojected mean ocean warming of 0.12 ∘C (0.6 ∘C insurface waters and 0.02 ∘C in deep waters), a reduction inparticulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport.more » « less