skip to main content


Title: adPerf: Characterizing the Performance of Third-party Ads
Monetizing websites and web apps through online advertising is widespread in the web ecosystem, creating a billion-dollar market. This has led to the emergence of a vast network of tertiary ad providers and ad syndication to facilitate this growing market. Nowadays, the online advertising ecosystem forces publishers to integrate ads from these third-party domains. On the one hand, this raises several privacy and security concerns that are actively being studied in recent years. On the other hand, the ability of today's browsers to load dynamic web pages with complex animations and Javascript has also transformed online advertising. This can have a significant impact on webpage performance. The latter is a critical metric for optimization since it ultimately impacts user satisfaction. Unfortunately, there are limited literature studies on understanding the performance impacts of online advertising which we argue is as important as privacy and security. In this paper, we apply an in-depth and first-of-a-kind performance evaluation of web ads. Unlike prior efforts that rely primarily on adblockers, we perform a fine-grained analysis on the web browser's page loading process to demystify the performance cost of web ads. We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance. For this purpose, we develop a tool, adPerf, for the Chrome browser that classifies page loading workloads into ad-related and main-content at the granularity of browser activities. Our evaluations show that online advertising entails more than 15% of browser page loading workload and approximately 88% of that is spent on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages include fewer and well-optimized ads. We also track the sources and delivery chain of web ads and analyze performance considering the origin of the ad contents. We observe that 2 of the well-known third-party ad domains contribute to 35% of the ads performance cost and surprisingly, top news websites implicitly include unknown third-party ads which in some cases build up to more than 37% of the ads performance cost.  more » « less
Award ID(s):
1939237
PAR ID:
10217204
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
5
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The rapid growth of online advertising has fueled the growth of ad-blocking software, such as new ad-blocking and privacy-oriented browsers or browser extensions. In response, both ad publishers and ad networks are constantly trying to pursue new strategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push technology enabled by modern web browsers. As web push notifications (WPNs) are relatively new, their role in ad delivery has not yet been studied in depth. Furthermore, it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In this paper, we aim to fill this gap. Specifically, we propose a system called PushAdMiner that is dedicated to (1) automatically registering for and collecting a large number of web-based push notifications from publisher websites, (2) finding WPN-based ads among these notifications, and (3) discovering malicious WPN-based ad campaigns. Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of different websites. Among these, our system identified 572 WPN ad campaigns, for a total of 5,143 WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51% of all WPN ads we collected are malicious, and that traditional ad-blockers and URL filters were mostly unable to block them, thus leaving a significant abuse vector unchecked. 
    more » « less
  2. Abstract The rise of ad-blockers is viewed as an economic threat by online publishers who primarily rely on online advertising to monetize their services. To address this threat, publishers have started to retaliate by employing anti ad-blockers , which scout for ad-block users and react to them by pushing users to whitelist the website or disable ad-blockers altogether. The clash between ad-blockers and anti ad-blockers has resulted in a new arms race on the Web. In this paper, we present an automated machine learning based approach to identify anti ad-blockers that detect and react to ad-block users. The approach is promising with precision of 94.8% and recall of 93.1%. Our automated approach allows us to conduct a large-scale measurement study of anti ad-blockers on Alexa top-100K websites. We identify 686 websites that make visible changes to their page content in response to ad-block detection. We characterize the spectrum of different strategies used by anti ad-blockers. We find that a majority of publishers use fairly simple first-party anti ad-block scripts. However, we also note the use of third-party anti ad-block services that use more sophisticated tactics to detect and respond to ad-blockers. 
    more » « less
  3. Mobile web browsing remains slow despite many efforts to accelerate page loads. Like others, we find that client-side computation (in particular, JavaScript execution) is a key culprit. Prior solutions to mitigate computation overheads, however, suffer from security, privacy, and deployability issues, hindering their adoption. To sidestep these issues, we propose a browser-based solution in which every client reuses identical computations from its prior page loads. Our analysis across roughly 230 pages reveals that, even on a modern smartphone, such an approach could reduce client-side computation by a median of 49% on pages which are most in need of such optimizations. 
    more » « less
  4. Header bidding (HB) is a relatively new online advertising technology that allows a content publisher to conduct a client-side (i.e., from within the end-user’s browser), real-time auction for selling ad slots on a web page. We developed a new browser extension for Chrome and Firefox to observe this in-browser auction process from the user’s perspective. We use real end-user measurements from 393,400 HB auctions to (a) quantify the ad revenue from HB auctions, (b) estimate latency overheads when integrating with ad exchanges and discuss their implications for ad revenue, and (c) break down the time spent in soliciting bids from ad exchanges into various factors and highlight areas for improvement. For the users in our study, we find that HB increases ad revenue for web sites by 28% compared to that in real-time bidding as reported in a prior work. We also find that the latency overheads in HB can be easily reduced or eliminated and outline a few solutions, and pitch the HB platform as an opportunity for privacy-preserving advertising. 
    more » « less
  5. Advertisements have become commonplace on modern websites. While ads are typically designed for visual consumption, it is unclear how they affect blind users who interact with the ads using a screen reader. Existing research studies on non-visual web interaction predominantly focus on general web browsing; the specific impact of extraneous ad content on blind users’ experience remains largely unexplored. To fill this gap, we conducted an interview study with 18 blind participants; we found that blind users are often deceived by ads that contextually blend in with the surrounding web page content. While ad blockers can address this problem via a blanket filtering operation, many websites are increasingly denying access if an ad blocker is active. Moreover, ad blockers often do not filter out internal ads injected by the websites themselves. Therefore, we devised an algorithm to automatically identify contextually deceptive ads on a web page. Specifically, we built a detection model that leverages a multi-modal combination of handcrafted and automatically extracted features to determine if a particular ad is contextually deceptive. Evaluations of the model on a representative test dataset and ‘in-the-wild’ random websites yielded F1 scores of 0.86 and 0.88, respectively. 
    more » « less