Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current ( I h ) is critical to the function of the electrical synapse. When we blocked I h with CsCl, the apparent voltage dependencemore »
Adeno-associated viral overexpression of neuroligin 2 in the mouse hippocampus enhances GABAergic synapses and impairs hippocampal-dependent behaviors.
The cell adhesion molecule neuroligin2 (NLGN2) regulates GABAergic synapse development, but its role inneural circuit function in the adult hippocampus is unclear. We investigated GABAergic synapses and hippo-campus-dependent behaviors following viral-vector-mediated overexpression of NLGN2. Transducing hippo-campal neurons with AAV-NLGN2 increased neuronal expression of NLGN2 and membrane localization ofGABAergic postsynaptic proteins gephyrin and GABAARγ2, and presynaptic vesicular GABA transporter protein(VGAT) suggesting trans-synaptic enhancement of GABAergic synapses. In contrast, glutamatergic postsynapticdensity protein-95 (PSD-95) and presynaptic vesicular glutamate transporter (VGLUT) protein were unaltered.Moreover, AAV-NLGN2 significantly increased parvalbumin immunoreactive (PV+) synaptic boutons co-loca-lized with postsynaptic gephyrin+puncta. Furthermore, these changes were demonstrated to lead to cognitiveimpairments as shown in a battery of hippocampal-dependent mnemonic tasks and social behaviors.
- Award ID(s):
- 1828327
- Publication Date:
- NSF-PAR ID:
- 10217589
- Journal Name:
- Behavioural brain research
- Volume:
- 362
- Page Range or eLocation-ID:
- 7-20
- ISSN:
- 0166-4328
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Ca v 1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking inmore »
-
Abstract Short-term plasticity preserves a brief history of synaptic activity that is communicated to the postsynaptic neuron. This is primarily regulated by a calcium signal initiated by voltage dependent calcium channels in the presynaptic terminal. Imaging studies of CA3-CA1 synapses reveal the presence of another source of calcium, the endoplasmic reticulum (ER) in all presynaptic terminals. However, the precise role of the ER in modifying STP remains unexplored. We performed in-silico experiments in synaptic geometries based on reconstructions of the rat CA3-CA1 synapses to investigate the contribution of ER. Our model predicts that presynaptic ER is critical in generating themore »
-
Abstract Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescencemore »
-
Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgarisThe vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a “fan-out fan-in” connectivity matrix comprising only three morphologically identified neuron types; input axons from the superior frontal lobe (SFL) innervating en passant millions of small amacrine interneurons (AMs) which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity: a glutamatergic synapse at the first SFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. SFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmittermore »