skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator
Abstract InPseudomonas aeruginosathealpsystem encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates thealpBCDEcell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.  more » « less
Award ID(s):
1714103
PAR ID:
10217688
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Becker, Anke (Ed.)
    ABSTRACT Plant pathogenic bacteria encounter a drastic increase in apoplastic pH during the early stages of plant immunity. The effects of alkalization on pathogen-host interactions have not been comprehensively characterized. Here, we used a global transcriptomic approach to assess the impact of environmental alkalization onPseudomonas syringaepv.tomatoDC3000in vitro. In addition to the Type 3 Secretion System, we found expression of genes encoding other virulence factors such as iron uptake and coronatine biosynthesis to be strongly affected by environmental alkalization. We also found that the activity of AlgU, an important regulator of virulence gene expression, was induced at pH 5.5 and suppressed at pH 7.8, which are pH levels that this pathogen would likely experience before and during pattern-triggered immunity, respectively. This pH-dependent control requires the presence of periplasmic proteases, AlgW and MucP, that function as part of the environmental sensing system that activates AlgU in specific conditions. This is the first example of pH-dependency of AlgU activity, suggesting a regulatory pathway model where pH affects the proteolysis-dependent activation of AlgU. These results contribute to deeper understanding of the role apoplastic pH has on host-pathogen interactions.IMPORTANCEPlant pathogenic bacteria, likePseudomonas syringae, encounter many environmental changes including oxidative stress and alkalization during plant immunity, but the ecological effects of the individual responses are not well understood. In this study, we found that transcription of many previously characterized virulence factors inP. syringaepv.tomatoDC3000 is downregulated by the level of environmental alkalization these bacteria encounter during the early stages of plant immune activation. We also report for the first time the sigma factor AlgU is post-translationally activated by low environmental pH through its natural activation pathway, which partially accounts for the expression Type 3 Secretion System virulence genes at acidic pH. The results of this study demonstrate the importance of extracellular pH on global regulation of virulence-related gene transcription in plant pathogenic bacteria. 
    more » « less
  2. Burbank, Lindsey Price (Ed.)
    ABSTRACT Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive inXanthomonasspp. To bridge this knowledge gap, we conducted anin vitrotranscriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect oftssMdeletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression inXanthomonas perforansstrain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion oftssMof cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators likerpoN, Pho regulon,rpoE, andcsrAwere identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators likecsrA,rpoN, andphoregulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes. IMPORTANCET6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here,Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* inX. perforansAL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria. 
    more » « less
  3. Several species of the Agrobacterium genus represent unique bacterial pathogens able to genetically transform plants, by transferring and integrating a segment of their own DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process results in uncontrolled growth of the infected plant cells (“tumors”), this capability of Agrobacterium has been widely used as a crucial tool to generate transgenic plants, for research and biotechnology. The virulence of Agrobacterium relies on a series of virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing plasmid), involved in the different steps of the DNA transfer to the host cell genome: activation of bacterial virulence, synthesis and export of the T-DNA and its associated proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell, and integration of the T-DNA in the host genomic DNA. Multiple interactions between these bacterial encoded proteins and host factors occur during the infection process, which determine the outcome of the infection. Here, we review our current knowledge of the mechanisms by which bacterial and plant factors control Agrobacterium virulence and host plant susceptibility. 
    more » « less
  4. Parrish, Colin R (Ed.)
    ABSTRACT Bracoviruses (BVs) are endogenized nudiviruses in parasitoid wasps of the microgastroid complex (order Hymenoptera: Family Braconidae). BVs produce replication-defective virions that adult female wasps use to transfer DNAs encoding virulence genes to parasitized hosts. Some BV genes are shared with nudiviruses and baculoviruses with studies of the latter providing insights on function, whereas other genes are only known from nudiviruses or other BVs which provide no functional insights. A proteomic analysis ofMicroplitis demolitorbracovirus (MdBV) virions recently identified 16 genes encoding nucleocapsid components. In this study, we further characterized most of these genes. Some nucleocapsid genes exhibited early or intermediate expression profiles, while others exhibited late expression profiles. RNA interference (RNAi) assays together with transmission electron microscopy indicatedvp39,HzNVorf9-like2,HzNVorf93-like,HzNVorf106-like,HzNVorf118-like,and 27bare required to produce capsids with a normal barrel-shaped morphology. RNAi knockdown ofvlf-1a,vlf-1b-1,vlf-1b-2,int-1,andp6.9-1did not alter the formation of barrel-shaped capsids but each reduced processing of amplified proviral segments and DNA packaging as evidenced by the formation of electron translucent capsids. All of the genes required for normal capsid assembly were also required for proviral segment processing and DNA packaging. Collectively, our results deorphanize several BV genes with previously unknown roles in virion morphogenesis. IMPORTANCEUnderstanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of theMicroplitis demolitorbracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding proteinp6.9-1are required for DNA processing and packaging into nucleocapsids. 
    more » « less
  5. Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasiteToxoplasma gondiias a model because liveToxoplasmaactively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivatedToxoplasmainto macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite’s intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation. 
    more » « less