During a design process, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are important to the development of new algorithms embedded with human intelligence to augment computational design. In this paper, we develop a deep learning based approach to model and predict designers’ sequential decisions in a system design context. The core of this approach is an integration of the function-behavior-structure model for design process characterization and the long short term memory unit model for deep leaning. This approach is demonstrated in a solar energy system design case study, and its prediction accuracy is evaluated benchmarked on several commonly used models for sequential design decisions, such as Markov Chain model, Hidden Markov Chain model, and random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to reply on both short-term and long-term memory of past design decisions in guiding their decision making in future design process. Our approach is general to be applied in many other design contexts as long as the sequential design action data is available.
- PAR ID:
- 10217999
- Date Published:
- Journal Name:
- Journal of Mechanical Design
- Volume:
- 143
- Issue:
- 8
- ISSN:
- 1050-0472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Design thinking is essential to the success of a design process as it helps achieve the design goal by guiding design decision-making. Therefore, fundamentally understanding design thinking is vital for improving design methods, tools and theories. However, interpreting design thinking is challenging because it is a cognitive process that is hidden and intangible. In this paper, we represent design thinking as an intermediate layer between human designers’ thought processes and their design behaviors. To do so, this paper first identifies five design behaviors based on the current design theories. These behaviors include design action preference, one-step sequential behavior, contextual behavior, long-term sequential behavior, and reflective thinking behavior. Next, we develop computational methods to characterize each of the design behaviors. Particularly, we use design action distribution, first-order Markov chain, Doc2Vec, bi-directional LSTM autoencoder, and time gap distribution to characterize the five design behaviors. The characterization of the design behaviors through embedding techniques is essentially a latent representation of the design thinking, and we refer to it as design embeddings. After obtaining the embedding, an X-mean clustering algorithm is adopted to each of the embeddings to cluster designers. The approach is applied to data collected from a high school solar system design challenge. The clustering results show that designers follow several design patterns according to the corresponding behavior, which corroborates the effectiveness of using design embedding for design behavior clustering. The extraction of design embedding based on the proposed approach can be useful in other design research, such as inferring design decisions, predicting design performance, and identifying design actions identification.
-
null (Ed.)
Abstract Designers make information acquisition decisions, such as where to search and when to stop the search. Such decisions are typically made sequentially, such that at every search step designers gain information by learning about the design space. However, when designers begin acquiring information, their decisions are primarily based on their prior knowledge. Prior knowledge influences the initial set of assumptions that designers use to learn about the design space. These assumptions are collectively termed as inductive biases. Identifying such biases can help us better understand how designers use their prior knowledge to solve problems in the light of uncertainty. Thus, in this study, we identify inductive biases in humans in sequential information acquisition tasks. To do so, we analyze experimental data from a set of behavioral experiments conducted in the past [1–5]. All of these experiments were designed to study various factors that influence sequential information acquisition behaviors. Across these studies, we identify similar decision making behaviors in the participants in their very first decision to “choose x”. We find that their choices of “x” are not uniformly distributed in the design space. Since such experiments are abstractions of real design scenarios, it implies that further contextualization of such experiments would only increase the influence of these biases. Thus, we highlight the need to study the influence of such biases to better understand designer behaviors. We conclude that in the context of Bayesian modeling of designers’ behaviors, utilizing the identified inductive biases would enable us to better model designer’s priors for design search contexts as compared to using non-informative priors.
-
Abstract Partially Observable Markov Decision Processes (POMDPs) can model complex sequential decision-making problems under stochastic and uncertain environments. A main reason hindering their broad adoption in real-world applications is the unavailability of a suitable POMDP model or a simulator thereof. Available solution algorithms, such as Reinforcement Learning (RL), typically benefit from the knowledge of the transition dynamics and the observation generating process, which are often unknown and non-trivial to infer. In this work, we propose a combined framework for inference and robust solution of POMDPs via deep RL. First, all transition and observation model parameters are jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model, which is conditioned on actions, in order to recover full posterior distributions from the available data. The POMDP with uncertain parameters is then solved via deep RL techniques with the parameter distributions incorporated into the solution via domain randomization, in order to develop solutions that are robust to model uncertainty. As a further contribution, we compare the use of Transformers and long short-term memory networks, which constitute model-free RL solutions and work directly on the observation space, with an approach termed the belief-input method, which works on the belief space by exploiting the learned POMDP model for belief inference. We apply these methods to the real-world problem of optimal maintenance planning for railway assets and compare the results with the current real-life policy. We show that the RL policy learned by the belief-input method is able to outperform the real-life policy by yielding significantly reduced life-cycle costs.
-
Building facades are components that shape a structure’s daylighting, energy use, and view factors. This paper presents an approach that enables designers to understand the impact that different facade designs will have over time and space in the built environment through a BIM-enabled augmented reality system. The system permits the examination of a range of facade retrofit scenarios and visualizes the daylighting simulations and aesthetics of a structure while retaining function and comfort. A focus of our study was to measure how participants make decisions within the multiobjective decision space designers often face when buildings undergo retrofitting. This process often requires designers to search for a set of alternatives that represent the optimal solution. We analyze the decision-making process of forty-four subjects to determine how they explore design choices. Our results indicate the feasibility of using BIM-enabled AR to improve how designers make informed decisions.more » « less