skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human Inductive Biases in Design Decision Making
Abstract Designers make information acquisition decisions, such as where to search and when to stop the search. Such decisions are typically made sequentially, such that at every search step designers gain information by learning about the design space. However, when designers begin acquiring information, their decisions are primarily based on their prior knowledge. Prior knowledge influences the initial set of assumptions that designers use to learn about the design space. These assumptions are collectively termed as inductive biases. Identifying such biases can help us better understand how designers use their prior knowledge to solve problems in the light of uncertainty. Thus, in this study, we identify inductive biases in humans in sequential information acquisition tasks. To do so, we analyze experimental data from a set of behavioral experiments conducted in the past [1–5]. All of these experiments were designed to study various factors that influence sequential information acquisition behaviors. Across these studies, we identify similar decision making behaviors in the participants in their very first decision to “choose x”. We find that their choices of “x” are not uniformly distributed in the design space. Since such experiments are abstractions of real design scenarios, it implies that further contextualization of such experiments would only increase the influence of these biases. Thus, we highlight the need to study the influence of such biases to better understand designer behaviors. We conclude that in the context of Bayesian modeling of designers’ behaviors, utilizing the identified inductive biases would enable us to better model designer’s priors for design search contexts as compared to using non-informative priors.  more » « less
Award ID(s):
1662230
PAR ID:
10281766
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2020 International Design Engineering Technical Conferences and Computers and Information Science in Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, we focus on crowdsourcing contests for engineering design problems where contestants search for design alternatives. Our stakeholder is a designer of such a contest who requires support to make decisions, such as whether to share opponent-specific information with the contestants. There is a significant gap in our understanding of how sharing opponent-specific information influences a contestant’s information acquisition decision such as whether to stop searching for design alternatives. Such decisions in turn affect the outcomes of a design contest. To address this gap, the objective of this study is to investigate how participants’ decision to stop searching for a design solution is influenced by the knowledge about their opponent’s past performance. The objective is achieved by conducting a protocol study where participants are interviewed at the end of a behavioral experiment. In the experiment, participants compete against opponents with strong (or poor) performance records. We find that individuals make decisions to stop acquiring information based on various thresholds such as a target design quality, the number of resources they want to spend, and the amount of design objective improvement they seek in sequential search. The threshold values for such stopping criteria are influenced by the contestant’s perception about the competitiveness of their opponent. Such insights can enable contest designers to make decisions about sharing opponent-specific information with participants, such as the resources utilized by the opponent towards purposefully improving the outcomes of an engineering design contest. 
    more » « less
  2. Abstract Existing literature on information sharing in contests has established that sharing contest-specific information influences contestant behaviors, and thereby, the outcomes of a contest. However, in the context of engineering design contests, there is a gap in knowledge about how contest-specific information such as competitors’ historical performance influences designers’ actions and the resulting design outcomes. To address this gap, the objective of this study is to quantify the influence of information about competitors’ past performance on designers’ belief about the outcomes of a contest, which influences their design decisions, and the resulting design outcomes. We focus on a single-stage design competition where an objective figure of merit is available to the contestants for assessing the performance of their design. Our approach includes (i) developing a behavioral model of sequential decision making that accounts for information about competitors’ historical performance and (ii) using the model in conjunction with a human-subject experiment where participants make design decisions given controlled strong or weak performance records of past competitors. Our results indicate that participants spend greater efforts when they know that the contest history reflects that past competitors had a strong performance record than when it reflects a weak performance record. Moreover, we quantify cognitive underpinnings of such informational influence via our model parameters. Based on the parametric inferences about participants’ cognition, we suggest that contest designers are better off not providing historical performance records if past contest outcomes do not match their expectations setup for a given design contest. 
    more » « less
  3. Abstract During a design process, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are important to the development of new algorithms embedded with human intelligence to augment computational design. In this paper, we develop a deep learning based approach to model and predict designers’ sequential decisions in a system design context. The core of this approach is an integration of the function-behavior-structure model for design process characterization and the long short term memory unit model for deep leaning. This approach is demonstrated in a solar energy system design case study, and its prediction accuracy is evaluated benchmarked on several commonly used models for sequential design decisions, such as Markov Chain model, Hidden Markov Chain model, and random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to reply on both short-term and long-term memory of past design decisions in guiding their decision making in future design process. Our approach is general to be applied in many other design contexts as long as the sequential design action data is available. 
    more » « less
  4. null (Ed.)
    Abstract In engineering systems design, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are essential to the development of new algorithms embedded with human intelligence to augment the computational design. In this paper, we develop a deep learning-based approach to model and predict designers’ sequential decisions in the systems design context. The core of this approach is an integration of the function-behavior-structure (FBS) model for design process characterization and the long short-term memory unit (LSTM) model for deep leaning. This approach is demonstrated in two case studies on solar energy system design, and its prediction accuracy is evaluated benchmarking on several commonly used models for sequential design decisions, such as the Markov Chain model, the Hidden Markov Chain model, and the random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to rely on both short-term and long-term memory of past design decisions in guiding their future decision-making in the design process. Our approach can support human–computer interactions in design and is general to be applied in other design contexts as long as the sequential data of design actions are available. 
    more » « less
  5. Abstract Engineering design involves information acquisition decisions such as selecting designs in the design space for testing, selecting information sources, and deciding when to stop design exploration. Existing literature has established normative models for these decisions, but there is lack of knowledge about how human designers make these decisions and which strategies they use. This knowledge is important for accurately modeling design decisions, identifying sources of inefficiencies, and improving the design process. Therefore, the primary objective in this study is to identify models that provide the best description of a designer’s information acquisition decisions when multiple information sources are present and the total budget is limited. We conduct a controlled human subject experiment with two independent variables: the amount of fixed budget and the monetary incentive proportional to the saved budget. By using the experimental observations, we perform Bayesian model comparison on various simple heuristic models and expected utility (EU)-based models. As expected, the subjects’ decisions are better represented by the heuristic models than the EU-based models. While the EU-based models result in better net payoff, the heuristic models used by the subjects generate better design performance. The net payoff using heuristic models is closer to the EU-based models in experimental treatments where the budget is low and there is incentive for saving the budget. This indicates the potential for nudging designers’ decisions toward maximizing the net payoff by setting the fixed budget at low values and providing monetary incentives proportional to saved budget. 
    more » « less