skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimentally validated model and analytical investigations on power optimization for piezoelectric-based wireless power transfer systems
This article presents a near-field low-frequency wireless power transfer system utilizing a piezoelectric transducer with magnet tip mass as a receiver. The interaction moment between the uniform B field generated by a Helmholtz coil and the magnet is the means to deliver the electrical energy from the transmitter to an electrical load, which is therefore referred to as magneto-mechano-electric effect. This is the first time a complete equivalent circuit model of such a structure is developed and experimentally verified. Based on the lumped model, various aspects of the power optimization problem are thoroughly discussed, providing a comprehensive view of the system and an important premise for further study.  more » « less
Award ID(s):
1651438
PAR ID:
10218233
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Intelligent Material Systems and Structures
Volume:
30
Issue:
16
ISSN:
1045-389X
Page Range / eLocation ID:
2464 to 2477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin–orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology. 
    more » « less
  2. This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has (1) advanced the stateof-the-art in power magnetics modeling; (2) set up examples for fostering an open-source and transparent research community; (3) developed useful guidelines and practical rules for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark leading to insights on the most promising future research directions. The competition yielded a collection of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced the size of data-driven power magnetic material models. The models and tools created for various materials were meticulously documented and shared within the broader power electronics community. 
    more » « less
  3. This paper presents a low-power Ultra Low Frequency (ULF) transmitter design that uses a static, permanent magnet to bring the surrounding magnetic shield near saturation. A low-power control coil modulates this static magnetic field by toggling sections of the shield between saturated and unsaturated states. The transmitter, operating at 400 Hz and tested using a 3D magnetometer, demonstrated an increase of 22.3 dB along the pole at 800 Hz and a 17.7 dB increase at 400 Hz perpendicular to the pole, with a further 33 dB enhancement than the control coil’s leakage at 800 Hz. These results highlight a novel method for efficient magnetic field modulation with significantly lower power requirements than traditional approaches. This novel approach reduces power consumption and opens new possibilities for designing scalable, energy-efficient ULF communication systems, with potential applications in underwater communication, remote sensing, and long-range wireless networks. 
    more » « less
  4. Abstract—This paper presents a control co-design method for designing the mechanical power takeoff (PTO) system of a dual- flap oscillating surge wave energy converter. Unlike most existing work’s simplified representation of harvested power, this paper derives a more realistic electrical power representation based on a concise PTO modelling. This electrical power is used as the objective for PTO design optimization with energy maxi- mization control also taken into consideration to enable a more comprehensive design evaluation. A simple PI control structure speeds up the simultaneous co-optimization of control and PTO parameters, and an equivalent circuit model of the WEC not only streamlines power representation but also facilitates more insightful evaluation of the optimization results. The optimized PTO shows a large improvement in terms of power potential and actual power performance. It’s found the generator’s 
    more » « less
  5. This letter presents a magnetic coupling wireless power transfer system (WPTS) configured in a series-series topology and operating at both resonance and anti-resonance frequencies which occur due to the parasitic coil capacitances. It is shown that their effects on system dynamics cannot be ignored. A mathematical model based on circuit theory is developed and the analytical solution for the power transferred to an electrical load is derived. A technique for extracting coil parameters such as resistance, inductance and capacitance from impedance measurements is proposed. The complete model is first experimentally verified and then used for further numerical investigations. 
    more » « less