skip to main content

Title: Optimal algorithms for ranked enumeration of answers to full conjunctive queries
We study ranked enumeration of join-query results according to very general orders defined by selective dioids. Our main contribution is a framework for ranked enumeration over a class of dynamic programming problems that generalizes seemingly different problems that had been studied in isolation. To this end, we extend classic algorithms that find the k -shortest paths in a weighted graph. For full conjunctive queries, including cyclic ones, our approach is optimal in terms of the time to return the top result and the delay between results. These optimality properties are derived for the widely used notion of data complexity, which treats query size as a constant. By performing a careful cost analysis, we are able to uncover a previously unknown tradeoff between two incomparable enumeration approaches: one has lower complexity when the number of returned results is small, the other when the number is very large. We theoretically and empirically demonstrate the superiority of our techniques over batch algorithms, which produce the full result and then sort it. Our technique is not only faster for returning the first few results, but on some inputs beats the batch algorithm even when all results are produced.  more » « less
Award ID(s):
1762268 1956096
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Page Range / eLocation ID:
1582 to 1597
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Top-k queries have been studied intensively in the database community and they are an important means to reduce query cost when only the “best” or “most interesting” results are needed instead of the full output. While some optimality results exist, e.g., the famous Threshold Algorithm, they hold only in a fairly limited model of computation that does not account for the cost incurred by large intermediate results and hence is not aligned with typical database-optimizer cost models. On the other hand, the idea of avoiding large intermediate results is arguably the main goal of recent work on optimal join algorithms, which uses the standard RAM model of computation to determine algorithm complexity. This research has created a lot of excitement due to its promise of reducing the time complexity of join queries with cycles, but it has mostly focused on full-output computation. We argue that the two areas can and should be studied from a unified point of view in order to achieve optimality in the common model of computation for a very general class of top-k-style join queries. This tutorial has two main objectives. First, we will explore and contrast the main assumptions, concepts, and algorithmic achievements of the two research areas. Second, we will cover recent, as well as some older, approaches that emerged at the intersection to support efficient ranked enumeration of join-query results. These are related to classic work on k-shortest path algorithms and more general optimization problems, some of which dates back to the 1950s. We demonstrate that this line of research warrants renewed attention in the challenging context of ranked enumeration for general join queries. 
    more » « less
  2. We study theta-joins in general and join predicates with conjunctions and disjunctions of inequalities in particular, focusing on ranked enumeration where the answers are returned incrementally in an order dictated by a given ranking function. Our approach achieves strong time and space complexity properties: with n denoting the number of tuples in the database, we guarantee for acyclic full join queries with inequality conditions that for every value of k , the k top-ranked answers are returned in O ( n polylog n + k log k ) time. This is within a polylogarithmic factor of O ( n + k log k ), i.e., the best known complexity for equi-joins, and even of O ( n + k ), i.e., the time it takes to look at the input and return k answers in any order. Our guarantees extend to join queries with selections and many types of projections (namely those called "free-connex" queries and those that use bag semantics). Remarkably, they hold even when the number of join results is n ℓ for a join of ℓ relations. The key ingredient is a novel O ( n polylog n )-size factorized representation of the query output , which is constructed on-the-fly for a given query and database. In addition to providing the first nontrivial theoretical guarantees beyond equi-joins, we show in an experimental study that our ranked-enumeration approach is also memory-efficient and fast in practice, beating the running time of state-of-the-art database systems by orders of magnitude. 
    more » « less
  3. Join query evaluation with ordering is a fundamental data processing task in relational database management systems. SQL and custom graph query languages such as Cypher offer this functionality by allowing users to specify the order via the ORDER BY clause. In many scenarios, the users also want to see the first k results quickly (expressed by the LIMIT clause), but the value of k is not predetermined as user queries are arriving in an online fashion. Recent work has made considerable progress in identifying optimal algorithms for ranked enumeration of join queries that do not contain any projections. In this paper, we initiate the study of the problem of enumerating results in ranked order for queries with projections. Our main result shows that for any acyclic query, it is possible to obtain a near-linear (in the size of the database) delay algorithm after only a linear time preprocessing step for two important ranking functions: sum and lexicographic ordering. For a practical subset of acyclic queries known as star queries, we show an even stronger result that allows a user to obtain a smooth tradeoff between faster answering time guarantees using more preprocessing time. Our results are also extensible to queries containing cycles and unions. We also perform a comprehensive experimental evaluation to demonstrate that our algorithms, which are simple to implement, improve up to three orders of magnitude in the running time over state-of-the-art algorithms implemented within open-source RDBMS and specialized graph databases. 
    more » « less
  4. null (Ed.)
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds. 
    more » « less
  5. Developing techniques to infer the behavior of networked social systems has attracted a lot of attention in the literature. Using a discrete dynamical system to model a networked social system, the problem of inferring the behavior of the system can be formulated as the problem of learning the local functions of the dynamical system. We investigate the problem assuming an active form of interaction with the system through queries. We consider two classes of local functions (namely, symmetric and threshold functions) and two interaction modes, namely batch (where all the queries must be submitted together) and adaptive (where the set of queries submitted at a stage may rely on the answers to previous queries). We establish bounds on the number of queries under both batch and adaptive query modes using vertex coloring and probabilistic methods. Our results show that a small number of appropriately chosen queries are provably sufficient to correctly learn all the local functions. We develop complexity results which suggest that, in general, the problem of generating query sets of minimum size is computationally intractable. We present efficient heuristics that produce query sets under both batch and adaptive query modes. Also, we present a query compaction algorithm that identifies and removes redundant queries from a given query set. Our algorithms were evaluated through experiments on over 20 well-known networks. 
    more » « less