skip to main content


Title: On the Distributed Complexity of Large-Scale Graph Computations
Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds.  more » « less
Award ID(s):
1633720
NSF-PAR ID:
10297340
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Parallel Computing
Volume:
8
Issue:
2
ISSN:
2329-4949
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study several fundamental problems in the k-machine model, a message-passing model for large-scale distributed computations where k ≥ 2 machines jointly perform computations on a large input of size N, (typically, N ≫ k). The input is initially partitioned (randomly or in a balanced fashion) among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is a general technique for designing efficient deterministic distributed algorithms in the k-machine model using PRAM algorithms. Our technique works by efficiently simulating PRAM algorithms in the k-machine model in a deterministic way. This simulation allows us to arrive at new algorithms in the k-machine model for some problems for which no efficient k-machine algorithms are known before and also improve on existing results in the k-machine model for some problems. While our simulation allows us to obtain k-machine algorithms for any problem with a known PRAM algorithm, we mainly focus on graph problems. For an input graph on n vertices and m edges, we obtain Õ(m/k 2 ) round 4 algorithms for various graph problems such as r-connectivity for r = 1, 2, 3, 4, minimum spanning tree (MST), maximal independent set (MIS), (Δ + 1)-coloring, maximal matching, ear decomposition, and spanners under the assumption that the edges of the input graph are partitioned (randomly, or in an arbitrary, but balanced, fashion) among the k machines. For problems such as connectivity and MST, the above bound is (essentially) the best possible (up to logarithmic factors). Our simulation technique allows us to obtain the first known efficient deterministic algorithms in the k-machine model for other problems with known deterministic PRAM algorithms. 
    more » « less
  2. null (Ed.)
    We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich, Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT-1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparison-based (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model if non-comparison-based algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT-1 Congest model, using silence to convey information,and solve any graph problem using non-comparison-based algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT-1 CONGEST model, we show that any comparison-based algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)-coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)-coloring or MIS algorithm, even non-comparison-based, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT-1 CONGEST model, we present the following randomized non-comparison-based algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)-coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)-coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△-coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT-2 CONGEST model, we obtain:(c) A randomized comparison-based MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the first-known algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds. 
    more » « less
  3. We introduce an abstract and strong model of massively parallel computation, where essentially the only restrictions are that the “fan-in” of each machine is limited to s bits, where s is smaller than the input size n, and that computation proceeds in synchronized rounds, with no communication between different machines within a round. Lower bounds on round complexity in this model apply to every computing platform that shares the most basic design principles of MapReduce-type systems. We apply a variant of the “polynomial method” to capture restrictions obeyed by all such massively parallel computations. This connection allows us to translate a lower bound on the (approximate) polynomial degree of a Boolean function to a lower bound on the round complexity of every (randomized) massively parallel computation of that function. These lower bounds apply even in the “unbounded width” version of our model, where the number of machines can be arbitrarily large. As one example of our general results, computing any non-trivial monotone graph property — such as any of the standard connectivity problems — requires a super-constant number of rounds when every machine can accept only a sub-polynomial (in n) number of input bits s. This lower bound constitutes significant progress on a major open question in the area, 
    more » « less
  4. null (Ed.)
    The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter. 
    more » « less
  5. We study smoothed analysis of distributed graph algorithms, focusing on the fundamental minimum spanning tree (MST) problem. With the goal of studying the time complexity of distributed MST as a function of the "perturbation" of the input graph, we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can be added to an input graph G per round. Informally, ϵ(n) is the probability (typically a small function of n, e.g., n--¼) that a random edge can be added to a node per round. The added random edges, once they are added, can be used (only) for communication. We show upper and lower bounds on the time complexity of distributed MST in the above smoothing model. We present a distributed algorithm that, with high probability, 1 computes an MST and runs in Õ(min{1/√ϵ(n)2O(√log n), D+ √n}) rounds2 where ϵ is the smoothing parameter, D is the network diameter and n is the network size. To complement our upper bound, we also show a lower bound of Ω(min{1/√ϵ(n), D + √n}). We note that the upper and lower bounds essentially match except for a multiplicative 2O(√log n) polylog(n) factor. Our work can be considered as a first step in understanding the smoothed complexity of distributed graph algorithms. 
    more » « less