Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato and tobacco plants, grown in five environments and across multiple developmental timepoints. Compared to existing methods for 3D skeletonization, our method efficiently and more accurately estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes containing networks of complex cylindrical shapes.
more »
« less
Plant 3D (P3D): a plant phenotyping toolkit for 3D point clouds
Abstract Motivation Developing methods to efficiently analyze 3D point cloud data of plant architectures remain challenging for many phenotyping applications. Here, we describe a tool that tackles four core phenotyping tasks: classification of cloud points into stem and lamina points, graph skeletonization of the stem points, segmentation of individual lamina and whole leaf labeling. These four tasks are critical for numerous downstream phenotyping goals, such as quantifying plant biomass, performing morphological analyses of plant shapes and uncovering genotype to phenotype relationships. The Plant 3D tool provides an intuitive graphical user interface, a fast 3D rendering engine for visualizing plants with millions of cloud points, and several graph-theoretic and machine-learning algorithms for 3D architecture analyses. Availability and implementation P3D is open-source and implemented in C++. Source code and Windows installer are freely available at https://github.com/iziamtso/P3D/. Contact iziamtso@ucsd.edu or navlakha@cshl.edu Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
- Award ID(s):
- 2026342
- PAR ID:
- 10218279
- Editor(s):
- Xu, Jinbo
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 1367-4803
- Page Range / eLocation ID:
- 3949 to 3950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bucksch, Alexander Clarke (Ed.)Understanding root traits is essential to improve water uptake, increase nitrogen capture and accelerate carbon sequestration from the atmosphere. High-throughput phenotyping to quantify root traits for deeper field-grown roots remains a challenge, however. Recently developed open-source methods use 3D reconstruction algorithms to build 3D models of plant roots from multiple 2D images and can extract root traits and phenotypes. Most of these methods rely on automated image orientation (Structure from Motion)[1] and dense image matching (Multiple View Stereo) algorithms to produce a 3D point cloud or mesh model from 2D images. Until now the performance of these methods when applied to field-grown roots has not been compared tested commonly used open-source pipelines on a test panel of twelve contrasting maize genotypes grown in real field conditions[2-6]. We compare the 3D point clouds produced in terms of number of points, computation time and model surface density. This comparison study provides insight into the performance of different open-source pipelines for maize root phenotyping and illuminates trade-offs between 3D model quality and performance cost for future high-throughput 3D root phenotyping. DOI recognition was not working: https://doi.org/10.1002/essoar.10508794.2more » « less
-
null (Ed.)Abstract Motivation The construction of the compacted de Bruijn graph from collections of reference genomes is a task of increasing interest in genomic analyses. These graphs are increasingly used as sequence indices for short- and long-read alignment. Also, as we sequence and assemble a greater diversity of genomes, the colored compacted de Bruijn graph is being used more and more as the basis for efficient methods to perform comparative genomic analyses on these genomes. Therefore, time- and memory-efficient construction of the graph from reference sequences is an important problem. Results We introduce a new algorithm, implemented in the tool Cuttlefish, to construct the (colored) compacted de Bruijn graph from a collection of one or more genome references. Cuttlefish introduces a novel approach of modeling de Bruijn graph vertices as finite-state automata, and constrains these automata’s state-space to enable tracking their transitioning states with very low memory usage. Cuttlefish is also fast and highly parallelizable. Experimental results demonstrate that it scales much better than existing approaches, especially as the number and the scale of the input references grow. On a typical shared-memory machine, Cuttlefish constructed the graph for 100 human genomes in under 9 h, using ∼29 GB of memory. On 11 diverse conifer plant genomes, the compacted graph was constructed by Cuttlefish in under 9 h, using ∼84 GB of memory. The only other tool completing these tasks on the hardware took over 23 h using ∼126 GB of memory, and over 16 h using ∼289 GB of memory, respectively. Availability and implementation Cuttlefish is implemented in C++14, and is available under an open source license at https://github.com/COMBINE-lab/cuttlefish. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.more » « less
-
Raza, Mudassar (Ed.)Cosegmentation is a newly emerging computer vision technique used to segment an object from the background by processing multiple images at the same time. Traditional plant phenotyping analysis uses thresholding segmentation methods which result in high segmentation accuracy. Although there are proposed machine learning and deep learning algorithms for plant segmentation, predictions rely on the specific features being present in the training set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical to better understand and predict plants’ responses to the environment. High-throughput phenotyping produces an abundance of data that can be leveraged to improve segmentation accuracy and plant phenotyping. This paper introduces four datasets consisting of two plant species, Buckwheat and Sunflower, each split into control and drought conditions. Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 temporal images that are collected in a high-throughput facility at the University of Nebraska-Lincoln. The four datasets (which will be collected under the CosegPP data repository in this paper) are evaluated using three cosegmentation algorithms: Markov random fields-based, Clustering-based, and Deep learning-based cosegmentation, and one commonly used segmentation approach in plant phenotyping. The integration of CosegPP with advanced cosegmentation methods will be the latest benchmark in comparing segmentation accuracy and finding areas of improvement for cosegmentation methodology.more » « less
An official website of the United States government

