skip to main content


Title: Inducing metallicity in graphene nanoribbons via zero-mode superlattices

The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) are challenging because lateral quantum confinement and many-electron interactions induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs. We verify the resulting metallicity using scanning tunneling spectroscopy as well as first-principles density-functional theory and tight-binding calculations. Our results reveal that the metallic bandwidth in GNRs can be tuned over a wide range by controlling the overlap of zero-mode wave functions through intentional sublattice symmetry breaking.

 
more » « less
Award ID(s):
1839098
PAR ID:
10218397
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
369
Issue:
6511
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1597-1603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoporous graphene (NPG) can exhibit a uniform electronic band gap and rationally‐engineered emergent electronic properties, promising for electronic devices such as field‐effect transistors (FETs), when synthesized with atomic precision. Bottom‐up, on‐surface synthetic approaches developed for graphene nanoribbons (GNRs) now provide the necessary atomic precision in NPG formation to access these desirable properties. However, the potential of bottom‐up synthesized NPG for electronic devices has remained largely unexplored to date. Here, FETs based on bottom‐up synthesized chevron‐type NPG (C‐NPG), consisting of ordered arrays of nanopores defined by laterally connected chevron GNRs, are demonstrated. C‐NPG FETs show excellent switching performance with on–off ratios exceeding 104, which are tightly linked to the structural quality of C‐NPG. The devices operate as p‐type transistors in the air, while n‐type transport is observed when measured under vacuum, which is associated with reversible adsorption of gases or moisture. Theoretical analysis of charge transport in C‐NPG is also performed through electronic structure and transport calculations, which reveal strong conductance anisotropy effects in C‐NPG. The present study provides important insights into the design of high‐performance graphene‐based electronic devices where ballistic conductance and conduction anisotropy are achieved, which could be used in logic applications, and ultra‐sensitive sensors for chemical or biological detection.

     
    more » « less
  2. null (Ed.)
    Graphene nanoribbons (GNRs) – an emerging family of carbon-based semiconductors – can be precisely synthesised from small molecules such as benzene derivatives through bottom-up approaches. This review outlines a summary of the development of bottom-up synthesis of GNRs in liquid phase. The strategies are classified based on edge structures and widths of the materials, which are the crucial factors for properties of GNRs. In addition, views on challenges in the field and the future outlook are also provided. 
    more » « less
  3. Abstract

    The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

     
    more » « less
  4. Graphene is a promising materials platform for metasurface flat optics at terahertz wavelengths, with the important advantage of active tunability. Here we review recent work aimed at the development of tunable graphene metasurfaces for THz wavefront shaping (including beam-steering metamirrors and metalenses) and light emission. Various design strategies for the constituent meta-units are presented, ranging from metallic phase-shifting elements combined with a nearby graphene sheet for active tuning to graphene plasmonic resonators providing the required phase control or radiation mechanism. The key challenge in the development of these devices, related to the limited radiative coupling of graphene plasmonic excitations, is discussed in detail together with recently proposed solutions. The resulting metasurface technology can be expected to have a far-reaching impact on a wide range of device applications for THz imaging, sensing, and future wireless communications.

     
    more » « less
  5. Metallic nanostructures can be used to selectively absorb a specific regime of the infrared (IR) spectrum depending on its constituent materials and geometry. In this paper, we propose and analyze a plasmo-thermomechanical detector that includes a graphene layer on top of metallic nanowires to enhance the absorption and sensitivity. The proposed device converts the free-space IR radiation to mechanical deformation of nanowires that modulates the insertion loss of the waveguide underneath the nanowires and facilitates the on-chip optical readout of the free-space radiation at room temperature. Our design takes advantage of localized surface plasmon resonances to maximize absorption at the desired IR spectrum. We provide a systematic investigation of different material combinations with and without graphene in addition to variations in detector geometry to optimize the designed IR detector. On top of the absorption enhancement, the graphene layer over the nanowires boosts thermal relaxation speed of the nanowires by 3 times due to graphene’s high thermal conductivity, in turn speeding up the response of the IR detection. Moreover, the coated graphene layer enhances the mechanical deformation by a factor of 6 and bends the suspended nanowires downward, enhancing the light–matter interaction between the nanowires and the waveguide evanescent field. Overall, incorporating graphene is beneficial for enhanced spectrum absorption, speed of the IR detection, and optical readout sensitivity.

     
    more » « less