skip to main content


Title: Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons
Abstract

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

 
more » « less
Award ID(s):
1839098
PAR ID:
10445948
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
18
Issue:
31
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoporous graphene (NPG) can exhibit a uniform electronic band gap and rationally‐engineered emergent electronic properties, promising for electronic devices such as field‐effect transistors (FETs), when synthesized with atomic precision. Bottom‐up, on‐surface synthetic approaches developed for graphene nanoribbons (GNRs) now provide the necessary atomic precision in NPG formation to access these desirable properties. However, the potential of bottom‐up synthesized NPG for electronic devices has remained largely unexplored to date. Here, FETs based on bottom‐up synthesized chevron‐type NPG (C‐NPG), consisting of ordered arrays of nanopores defined by laterally connected chevron GNRs, are demonstrated. C‐NPG FETs show excellent switching performance with on–off ratios exceeding 104, which are tightly linked to the structural quality of C‐NPG. The devices operate as p‐type transistors in the air, while n‐type transport is observed when measured under vacuum, which is associated with reversible adsorption of gases or moisture. Theoretical analysis of charge transport in C‐NPG is also performed through electronic structure and transport calculations, which reveal strong conductance anisotropy effects in C‐NPG. The present study provides important insights into the design of high‐performance graphene‐based electronic devices where ballistic conductance and conduction anisotropy are achieved, which could be used in logic applications, and ultra‐sensitive sensors for chemical or biological detection.

     
    more » « less
  2. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less
  3. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN-based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less
  4. Power semiconductor devices are utilized as solid-state switches in power electronics systems, and their overarching design target is to minimize the conduction and switching losses. However, the unipolar figure-of-merit (FOM) commonly used for power device optimization does not directly capture the switching loss. In this Perspective paper, we explore three interdependent open questions for unipolar power devices based on a variety of wide bandgap (WBG) and ultra-wide bandgap (UWBG) materials: (1) What is the appropriate switching FOM for device benchmarking and optimization? (2) What is the optimal drift layer design for the total loss minimization? (3) How does the device power loss compare between WBG and UWBG materials? This paper starts from an overview of switching FOMs proposed in the literature. We then dive into the drift region optimization in 1D vertical devices based on a hard-switching FOM. The punch-through design is found to be optimal for minimizing the hard-switching FOM, with reduced doping concentration and thickness compared to the conventional designs optimized for static FOM. Moreover, we analyze the minimal power loss density for target voltage and frequency, which provides an essential reference for developing device- and package-level thermal management. Overall, this paper underscores the importance of considering switching performance early in power device optimization and emphasizes the inevitable higher density of power loss in WBG and UWBG devices despite their superior performance. Knowledge gaps and research opportunities in the relevant field are also discussed. 
    more » « less
  5. β-Ga2O3 is an emerging ultra-wide bandgap semiconductor, holding a tremendous potential for power-switching devices for next-generation high power electronics. The performance of such devices strongly relies on the precise control of electrical properties of β-Ga2O3, which can be achieved by implantation of dopant ions. However, a detailed understanding of the impact of ion implantation on the structure of β-Ga2O3 remains elusive. Here, using aberration-corrected scanning transmission electron microscopy, we investigate the nature of structural damage in ion-implanted β-Ga2O3 and its recovery upon heat treatment with the atomic-scale spatial resolution. We reveal that upon Sn ion implantation, Ga2O3 films undergo a phase transformation from the monoclinic β-phase to the defective cubic spinel γ-phase, which contains high-density antiphase boundaries. Using the planar defect models proposed for the γ-Al2O3, which has the same space group as β-Ga2O3, and atomic-resolution microscopy images, we identify that the observed antiphase boundaries are the {100}1/4 ⟨110⟩ type in cubic structure. We show that post-implantation annealing at 1100 °C under the N2 atmosphere effectively recovers the β-phase; however, nano-sized voids retained within the β-phase structure and a γ-phase surface layer are identified as remanent damage. Our results offer an atomic-scale insight into the structural evolution of β-Ga2O3 under ion implantation and high-temperature annealing, which is key to the optimization of semiconductor processing conditions for relevant device design and the theoretical understanding of defect formation and phase stability.

     
    more » « less