skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Bottom‐Up Synthesized Nanoporous Graphene Transistors

Nanoporous graphene (NPG) can exhibit a uniform electronic band gap and rationally‐engineered emergent electronic properties, promising for electronic devices such as field‐effect transistors (FETs), when synthesized with atomic precision. Bottom‐up, on‐surface synthetic approaches developed for graphene nanoribbons (GNRs) now provide the necessary atomic precision in NPG formation to access these desirable properties. However, the potential of bottom‐up synthesized NPG for electronic devices has remained largely unexplored to date. Here, FETs based on bottom‐up synthesized chevron‐type NPG (C‐NPG), consisting of ordered arrays of nanopores defined by laterally connected chevron GNRs, are demonstrated. C‐NPG FETs show excellent switching performance with on–off ratios exceeding 104, which are tightly linked to the structural quality of C‐NPG. The devices operate as p‐type transistors in the air, while n‐type transport is observed when measured under vacuum, which is associated with reversible adsorption of gases or moisture. Theoretical analysis of charge transport in C‐NPG is also performed through electronic structure and transport calculations, which reveal strong conductance anisotropy effects in C‐NPG. The present study provides important insights into the design of high‐performance graphene‐based electronic devices where ballistic conductance and conduction anisotropy are achieved, which could be used in logic applications, and ultra‐sensitive sensors for chemical or biological detection.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphene nanoribbons (GNRs), when synthesized with atomic precision by bottom–up chemical approaches, possess tunable electronic structure, and high theoretical mobility, conductivity, and heat dissipation capabilities, which makes them an excellent candidate for channel material in post-silicon transistors. Despite their immense potential, achieving highly transparent contacts for efficient charge transport—which requires proper contact selection and a deep understanding of the complex one-dimensional GNR channel-three-dimensional metal contact interface—remains a challenge. In this study, we investigated the impact of different electron-beam deposited contact metals—the commonly used palladium (Pd) and softer metal indium (In)—on the structural properties and field-effect transistor performance of semiconducting nine-atom wide armchair GNRs. The performance and integrity of the GNR channel material were studied by means of a comprehensive Raman spectroscopy analysis, scanning tunneling microscopy (STM) imaging, optical absorption calculations, and transport measurements. We found that, compared to Pd, In contacts facilitate favorable Ohmic-like transport because of the reduction of interface defects, while the edge structure quality of GNR channel plays a more dominant role in determining the overall device performance. Our study provides a blueprint for improving device performance through contact engineering and material quality enhancements in emerging GNR-based technology.

    more » « less
  2. Abstract

    The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

    more » « less
  3. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  4. Abstract

    Biomolecule/graphene van der Waals heterojunction provides a generic platform for designing high‐performance, flexible, and scalable optoelectronics. A key challenge is, in controllable attachment, the biomolecules to form a desired interfacial electronic structure for a high‐efficiency optoelectronic process of photoabsorption, exciton dissociation into photocarriers, carrier transfer, and transport. Here, it is shown that a polarity‐controlled attachment of the Cytochrome c (Cyt c) biomolecules can be achieved on the channel of graphene field effect transistors (GFET). High‐efficiency charge transfer across the formed Cyt c/graphene interface is demonstrated when Cyt c attaches with positively charged side to GFET as predicted by molecular dynamics simulation and confirmed experimentally. This Cyt c/GFET van der Waals heterojunction nanohybrid photodetector exhibits a spectral photoresponsivity resembling the absorption spectrum of the Cyt c, confirming the role of Cty c as the photosensitizer in the device. The high visible photoresponsivity up to 7.57 × 104A W−1can be attributed to the high photoconductive gain in exceeding 105facilitated by the high carrier mobility in graphene. This result therefore demonstrates a viable approach in synthesis of the biomolecule/graphene van der Waals heterojunction optoelectronics using polarity‐controlled biomolecule attachment, which can be expanded for on‐chip printing of high‐performance molecular optoelectronics.

    more » « less
  5. Abstract

    The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead‐halide perovskite field‐effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor‐phase epitaxy technique that results in large‐area single‐crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin‐film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap‐free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall‐effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2V−1s−1at room temperature to ≈250 cm2V−1s−1at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon‐limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high‐performance perovskite electronic devices.

    more » « less