skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3-D Edge-Oriented Electrocatalytic NiCo 2 S 4 Nanoflakes on Vertical Graphene for Li-S Batteries
Polysulfide shuttle effect, causing extremely low Coulombic efficiency and cycling stability, is one of the toughest challenges hindering the development of practical lithium sulfur batteries (LSBs). Introducing catalytic nanostructures to stabilize the otherwise soluble polysulfides and promote their conversion to solids has been proved to be an effective strategy in attacking this problem, but the heavy mass of catalysts often results in a low specific energy of the whole electrode. Herein, by designing and synthesizing a free-standing edge-oriented NiCo 2 S 4 /vertical graphene functionalized carbon nanofiber (NCS/EOG/CNF) thin film as a catalytic overlayer incorporated in the sulfur cathode, the polysulfide shuttle effect is largely alleviated, revealed by the enhanced electrochemical performance measurements and the catalytic function demonstration. Different from other reports, the NiCo 2 S 4 nanosheets synthesized here have a 3-D edge-oriented structure with fully exposed edges and easily accessible in-plane surfaces, thus providing a high density of active sites even with a small mass. The EOG/CNF scaffold further renders the high conductivity in the catalytic structure. Combined, this novel structure, with high sulfur loading and high sulfur fraction, leads to high-performance sulfur cathodes toward a practical LSB technology.  more » « less
Award ID(s):
2103582
PAR ID:
10218519
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Energy Material Advances
Volume:
2021
ISSN:
2692-7640
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrated the efficient coupling of BiFeO3 (BFO) ferroelectric material within the carbon–sulfur (C-S) composite cathode, where polysulfides are trapped in BFO mesh, reducing the polysulfide shuttle impact, and thus resulting in an improved cyclic performance and an increase in capacity in Li-S batteries. Here, the built-in internal field due to BFO enhances polysulfide trapping. The observation of a difference in the diffusion behavior of polysulfides in BFO-coupled composites suggests more efficient trapping in BFO-modified C-S electrodes compared to pristine C-S composite cathodes. The X-ray diffraction results of BFO–C-S composite cathodes show an orthorhombic structure, while Raman spectra substantiate efficient coupling of BFO in C-S composites, in agreement with SEM images, showing the interconnected network of submicron-size sulfur composites. Two plateaus were observed at 1.75 V and 2.1 V in the charge/discharge characteristics of BFO–C-S composite cathodes. The observed capacity of ~1600 mAh g−1 in a 1.5–2.5 V operating window for BFO30-C10-S60 composite cathodes, and the high cyclic stability substantiate the superior performance of the designed cathode materials due to the efficient reduction in the polysulfide shuttle effect in these composite cathodes. 
    more » « less
  2. The notorious polysulfide shuttle effect is a crucial factor responsible for the degradation of Li-S batteries. A good way to suppress the shuttle effect is to effectively anchor dissoluble lithium polysulfides (LPSs, Li 2 S n ) on appropriate substrates. Previous studies have revealed that Li of Li 2 S n is prone to interact with the N of N-containing materials to form Li–N bonds. In this work, by means of density functional theory (DFT) computations, we explored the possibility to form Li bonds on ten different N-containing monolayers, including BN, C 2 N, C 2 N 6 S 3 , C 9 N 4 , a covalent triazine framework (CTF), g -C 3 N 4 , p -C 3 N 4 , C 3 N 5 , S -N 2 S, and T -N 2 S, by examining the adsorption behavior of Li 2 S n ( n = 1, 2, 3, 4, 6, 8) on these two-dimensional (2D) anchoring materials (AMs), and investigated the performance of the formed Li bonds (if any) in inhibiting the shuttle effect. By comparing and analyzing the nitrogen content, the N-containing pore size, charge transfer, and Li bonds, we found that the N content and N-containing pore size correlate with the number of Li bonds, and the formed Li–N bonds between LPSs and AMs correspond well with the adsorption energies of the LPSs. The C 9 N 4 and C 2 N 6 S 3 monolayers were identified as promising AMs in Li-S batteries. From the view of Li bonds, this work provides guidelines for designing 2D N-containing materials as anchoring materials to reduce the shuttle effect in Li-S batteries, and thus improving the performance of Li-S batteries. 
    more » « less
  3. Room-temperature sodium-sulfur (RT Na-S) batteries have attracted ever-increasing attention because of their enhanced energy density and low price. Although the performance of RT Na-S batteries is obtained in many other research, the basic mechanism and kinetics have not involved yet, especially in discharge product growth, which affects electrochemical performance. Meanwhile, designed additional redox activities (in the presence of oxygen) could simultaneously suppress sodium polysulfide shuttling and enhance energy density according to our group reported. However, the kinetic study of the intermediate has not been explored. In this work, we discussed the deposition of low-order sodium polysulfide (Na2Sx, x ≤ 2) in different potentials and types of glyme-solvents in Na-S and Na/(O2)-S system. The results show that the morphology of deposition Na2Sx(x ≤ 2) is affected by interfacial energy barrier controlled by overpotentials and the radius of sodium ions, which produced the precipitation of particle shape rather than film. Potentiostatic experiments show the kinetics are elevated in the presence of oxygen. In addition, the exchange current density of different sodium polysulfides was studied. The high-order sodium polysulfide has a lower exchange current density than that of low-order sodium polysulfide in Na-S system, requiring greater driving force, while transformation of the intermediate from high-order oxy-sulfur to low-order oxy-sulfur species require less impulse in Na/(O2)-S systems. This paper provides new understandings of the deposition mechanism and kinetics of Na2Sx(x ≤ 2) Na-S and Na/(O2)-S system in and to choose the appropriate solvent and potential. 
    more » « less
  4. The promise of secondary sulfur-based batteries as a sustainable and low-cost alternative to electrochemical energy storage has been long held back by the polysulfide shuttle problem. Herein, we demonstrate the utilization of electrolyte-soluble additives based on (oxo)thiomolybdate as a tool to mitigate the effect of the polysulfide shuttle in secondary sulfur-based batteries. Through a variety of techniques, it is shown that the Mo-containing anionic additives undergo spontaneous nucleophilic reactions with the highly soluble, long-chain polysulfides via a neutral S-atom transfer process, yielding higher S/Mo ratio complexes along with short-chain polysulfides. More importantly, it is shown how the O/S atomic substitution on the molybdenum center can induce enzymatic-level enhancement in the above reaction rate by lowering the homolytic S–S bond cleavage energy. Lastly, through anode-level inspections, it was realized that the dendritic electroplating of Li was suppressed considerably in the system with oxo/thiomolybdate, thereby reducing the cell impedance and overpotential, leading to significantly improved cycle-life. The positive influence of the increased polysulfide uptake reaction kinetics is evidenced by stable cycle-life and a low capacity-fade rate of 0.1% per cycle in Li–S cells with a high sulfur loading and lean electrolyte compositions. 
    more » « less
  5. In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field. 
    more » « less