skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gradient descent algorithms for Bures-Wasserstein barycenters
We study first order methods to compute the barycenter of a probability distribution $$P$$ over the space of probability measures with finite second moment. We develop a framework to derive global rates of convergence for both gradient descent and stochastic gradient descent despite the fact that the barycenter functional is not geodesically convex. Our analysis overcomes this technical hurdle by employing a Polyak-Ł{}ojasiewicz (PL) inequality and relies on tools from optimal transport and metric geometry. In turn, we establish a PL inequality when $$P$$ is supported on the Bures-Wasserstein manifold of Gaussian probability measures. It leads to the first global rates of convergence for first order methods in this context.  more » « less
Award ID(s):
1712596
PAR ID:
10219148
Author(s) / Creator(s):
; ; ;
Editor(s):
Abernethy, Jacob; Agarwal, Shivani
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
125
ISSN:
2640-3498
Page Range / eLocation ID:
1276--1304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lacoste-Julien, Simon (Ed.)
    Stochastic gradient descent is one of the most common iterative algorithms used in machine learning and its convergence analysis is a rich area of research. Understanding its convergence properties can help inform what modifications of it to use in different settings. However, most theoretical results either assume convexity or only provide convergence results in mean. This paper, on the other hand, proves convergence bounds in high probability without assuming convexity. Assuming strong smoothness, we prove high probability convergence bounds in two settings: (1) assuming the Polyak-Łojasiewicz inequality and norm sub-Gaussian gradient noise and (2) assuming norm sub-Weibull gradient noise. In the second setting, as an intermediate step to proving convergence, we prove a sub-Weibull martingale difference sequence self-normalized concentration inequality of independent interest. It extends Freedman-type concentration beyond the sub-exponential threshold to heavier-tailed martingale difference sequences. We also provide a post-processing method that picks a single iterate with a provable convergence guarantee as opposed to the usual bound for the unknown best iterate. Our convergence result for sub-Weibull noise extends the regime where stochastic gradient descent has equal or better convergence guarantees than stochastic gradient descent with modifications such as clipping, momentum, and normalization. 
    more » « less
  2. Abstract First-order optimization methods tend to inherently favor certain solutions over others when minimizing an underdetermined training objective that has multiple global optima. This phenomenon, known asimplicit bias, plays a critical role in understanding the generalization capabilities of optimization algorithms. Recent research has revealed that in separable binary classification tasks gradient-descent-based methods exhibit an implicit bias for the$$\ell _2$$ 2 -maximal margin classifier. Similarly, generic optimization methods, such as mirror descent and steepest descent, have been shown to converge to maximal margin classifiers defined by alternative geometries. While gradient-descent-based algorithms provably achievefastimplicit bias rates, corresponding rates in the literature for generic optimization methods are relatively slow. To address this limitation, we present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms. Our primary technique involves transforming a generic optimization algorithm into an online optimization dynamic that solves a regularized bilinear game, providing a unified framework for analyzing the implicit bias of various optimization methods. Our accelerated rates are derived by leveraging the regret bounds of online learning algorithms within this game framework. We then show the flexibility of this framework by analyzing the implicit bias inadversarial training, and again obtain significantly improved convergence rates. 
    more » « less
  3. We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of m reference measures given a set of coefficients belonging to the m-dimensional simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure μ. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of regularized barycenters as solutions to a fixed-point equation for the average of the entropic maps from the barycenter to the reference measures. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when μ is a barycenter. It is shown that these coordinates, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, a hallmark of entropy-regularized optimal transport, and we verify these rates experimentally. We also establish that barycentric coordinates are stable with respect to perturbations in the Wasserstein-2 metric, suggesting a robustness of these coefficients to corruptions. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes. 
    more » « less
  4. null (Ed.)
    Stochastic Gradient Descent (SGD) and its variants are the most used algorithms in machine learning applications. In particular, SGD with adaptive learning rates and momentum is the industry standard to train deep networks. Despite the enormous success of these methods, our theoretical understanding of these variants in the non-convex setting is not complete, with most of the results only proving convergence in expectation and with strong assumptions on the stochastic gradients. In this paper, we present a high probability analysis for adaptive and momentum algorithms, under weak assumptions on the function, stochastic gradients, and learning rates. We use it to prove for the first time the convergence of the gradients to zero in high probability in the smooth nonconvex setting for Delayed AdaGrad with momentum. 
    more » « less
  5. The optimal transport barycenter (a.k.a. Wasserstein barycenter) is a fundamental notion of averaging that extends from the Euclidean space to the Wasserstein space of probability distributions. Computation of the unregularized barycenter for discretized probability distributions on point clouds is a challenging task when the domain dimension d>1. Most practical algorithms for approximating the barycenter problem are based on entropic regularization. In this paper, we introduce a nearly linear time O(mlogm) and linear space complexity O(m) primal-dual algorithm, the Wasserstein-Descent ℍ˙1-Ascent (WDHA) algorithm, for computing the exact barycenter when the input probability density functions are discretized on an m-point grid. The key success of the WDHA algorithm hinges on alternating between two different yet closely related Wasserstein and Sobolev optimization geometries for the primal barycenter and dual Kantorovich potential subproblems. Under reasonable assumptions, we establish the convergence rate and iteration complexity of WDHA to its stationary point when the step size is appropriately chosen. Superior computational efficacy, scalability, and accuracy over the existing Sinkhorn-type algorithms are demonstrated on high-resolution (e.g., 1024×1024 images) 2D synthetic and real data. 
    more » « less