skip to main content

Search for: All records

Award ID contains: 1712596

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown non-decreasing regression function $f$ from independent pairs $(x_i, y_i)$ where ${\mathbb{E}}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart, where one is given only the unordered sets $\{x_1, \ldots , x_n\}$ and $\{y_1, \ldots , y_n\}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.

    more » « less
  2. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
  3. null (Ed.)
  4. null (Ed.)