skip to main content

Title: Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer
Multilingual representations embed words from many languages into a single semantic space such that words with similar meanings are close to each other regardless of the language. These embeddings have been widely used in various settings, such as cross-lingual transfer, where a natural language processing (NLP) model trained on one language is deployed to another language. While the cross-lingual transfer techniques are powerful, they carry gender bias from the source to target languages. In this paper, we study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications. We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations from both the intrinsic and extrinsic perspectives. Experimental results show that the magnitude of bias in the multilingual representations changes differently when we align the embeddings to different target spaces and that the alignment direction can also have an influence on the bias in transfer learning. We further provide recommendations for using the multilingual word representations for downstream tasks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
2896 to 2907
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging. 
    more » « less
  2. Multilingual transformer language models have recently attracted much attention from researchers and are used in cross-lingual transfer learning for many NLP tasks such as text classification and named entity recognition.However, similar methods for transfer learning from monolingual text to code-switched text have not been extensively explored mainly due to the following challenges:(1) Code-switched corpus, unlike monolingual corpus, consists of more than one language and existing methods can’t be applied efficiently,(2) Code-switched corpus is usually made of resource-rich and low-resource languages and upon using multilingual pre-trained language models, the final model might bias towards resource-rich language. In this paper, we focus on code-switched sentiment analysis where we have a labelled resource-rich language dataset and unlabelled code-switched data. We propose a framework that takes the distinction between resource-rich and low-resource language into account.Instead of training on the entire code-switched corpus at once, we create buckets based on the fraction of words in the resource-rich language and progressively train from resource-rich language dominated samples to low-resource language dominated samples. Extensive experiments across multiple language pairs demonstrate that progressive training helps low-resource language dominated samples. 
    more » « less
  3. Multilingual Word Embeddings (MWEs) represent words from multiple languages in a single distributional vector space. Unsupervised MWE (UMWE) methods acquire multilingual embeddings without cross-lingual supervision, which is a significant advantage over traditional supervised approaches and opens many new possibilities for low-resource languages. Prior art for learning UMWEs, however, merely relies on a number of independently trained Unsupervised Bilingual Word Embeddings (UBWEs) to obtain multilingual embeddings. These methods fail to leverage the interdependencies that exist among many languages. To address this shortcoming, we propose a fully unsupervised framework for learning MWEs1 that directly exploits the relations between all language pairs. Our model substantially outperforms previous approaches in the experiments on multilingual word translation and cross-lingual word similarity. In addition, our model even beats supervised approaches trained with cross-lingual resources. 
    more » « less
  4. Cross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations. Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training. 
    more » « less
  5. Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, NollySenti—based on the Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian-Pidgin, and Yorùbá). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. Leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation (MT) from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While MT to low-resource languages are often of low quality, through human evaluation, we show that most of the translated sentences preserve the sentiment of the original English reviews. 
    more » « less