skip to main content

Title: Multi-Source Cross-Lingual Model Transfer: Learning What to Share
Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL)
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multilingual transformer language models have recently attracted much attention from researchers and are used in cross-lingual transfer learning for many NLP tasks such as text classification and named entity recognition.However, similar methods for transfer learning from monolingual text to code-switched text have not been extensively explored mainly due to the following challenges:(1) Code-switched corpus, unlike monolingual corpus, consists of more than one language and existing methods can’t be applied efficiently,(2) Code-switched corpus is usually made of resource-rich and low-resource languages and upon using multilingual pre-trained language models, the final model might bias towards resource-rich language. In this paper, we focus on code-switched sentiment analysis where we have a labelled resource-rich language dataset and unlabelled code-switched data. We propose a framework that takes the distinction between resource-rich and low-resource language into account.Instead of training on the entire code-switched corpus at once, we create buckets based on the fraction of words in the resource-rich language and progressively train from resource-rich language dominated samples to low-resource language dominated samples. Extensive experiments across multiple language pairs demonstrate that progressive training helps low-resource language dominated samples. 
    more » « less
  2. Multilingual representations embed words from many languages into a single semantic space such that words with similar meanings are close to each other regardless of the language. These embeddings have been widely used in various settings, such as cross-lingual transfer, where a natural language processing (NLP) model trained on one language is deployed to another language. While the cross-lingual transfer techniques are powerful, they carry gender bias from the source to target languages. In this paper, we study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications. We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations from both the intrinsic and extrinsic perspectives. Experimental results show that the magnitude of bias in the multilingual representations changes differently when we align the embeddings to different target spaces and that the alignment direction can also have an influence on the bias in transfer learning. We further provide recommendations for using the multilingual word representations for downstream tasks. 
    more » « less
  3. Cross-lingual transfer, where a high-resource transfer language is used to improve the accuracy of a low-resource task language, is now an invaluable tool for improving performance of natural language processing (NLP) on lowresource languages. However, given a particular task language, it is not clear which language to transfer from, and the standard strategy is to select languages based on ad hoc criteria, usually the intuition of the experimenter. Since a large number of features contribute to the success of cross-lingual transfer (including phylogenetic similarity, typological properties, lexical overlap, or size of available data), even the most enlightened experimenter rarely considers all these factors for the particular task at hand. In this paper, we consider this task of automatically selecting optimal transfer languages as a ranking problem, and build models that consider the aforementioned features to perform this prediction. In experiments on representative NLP tasks, we demonstrate that our model predicts good transfer languages much better than ad hoc baselines considering single features in isolation, and glean insights on what features are most informative for each different NLP tasks, which may inform future ad hoc selection even without use of our method. 
    more » « less
  4. International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection(CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels. 
    more » « less
  5. Cross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations. Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training. 
    more » « less