skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Daily, weekly, seasonal and menstrual cycles in women’s mood, behaviour and vital signs
Dimensions of human mood, behaviour and vital signs cycle over multiple timescales. However, it remains unclear which dimensions are most cyclical, and how daily, weekly, seasonal and menstrual cycles compare in magnitude. The menstrual cycle remains particularly understudied because, not being synchronized across the population, it will be averaged out unless menstrual cycles can be aligned before analysis. Here, we analyse 241 million observations from 3.3 million women across 109 countries, tracking 15 dimensions of mood, behaviour and vital signs using a women’s health mobile app. Out of the daily, weekly, seasonal and menstrual cycles, the menstrual cycle had the greatest magnitude for most of the measured dimensions of mood, behaviour and vital signs. Mood, vital signs and sexual behaviour vary most substantially over the course of the menstrual cycle, while sleep and exercise behaviour remain more constant. Menstrual cycle effects are directionally consistent across countries.  more » « less
Award ID(s):
1918940 1934578
PAR ID:
10219235
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Human Behaviour
ISSN:
2397-3374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. This exploratory study investigates cyclical changes in physiological features across the menstrual cycle in women with epilepsy, focusing on their potential relationship with seizure occurrence.Approach. Nocturnal data during sleep were collected from two women with ovulatory cycles and compared with data from healthy controls, two non-ovulatory women, one postmenopausal woman, and two male patients. The aim was to characterize signal patterns across different reproductive states and to explore whether menstrual-related rhythms correspond to seizure timing. Circular statistics mapped signals onto an angular scale, allowing identification of biphasic patterns linked to ovulation, while machine learning algorithms identified ovulatory phases.Main Results. In ovulatory participants, seizure activity predominantly occurred around the late luteal and early follicular phases (p < 0.05), and non-uniform and biphaisc trends were observed in temperature, resembling patterns in healthy participants. In contrast, individuals taking enzyme-inducing antiepileptic drugs showed disrupted physiological rhythms. Although hormonal fluctuations appear to drive cyclical patterns, additional rhythms (e.g. weekly) were also observed, suggesting multifactorial influences.Significance. These preliminary findings underscore the need to account for menstrual and other biological cycles in seizure forecasting models and provide a foundation for future studies involving larger cohorts. 
    more » « less
  2. Emotion is vital to information and message processing, playing a key role in attitude formation. Consequently, creating a mood that evokes an emotional response is essential to any compelling piece of outreach communication. Many nonprofits and charities, despite having established messages, face challenges in creating advocacy campaign videos for social media. It requires significant creative and cognitive efforts to ensure that videos achieve the desired mood across multiple dimensions: script, visuals, and audio. We introduce Mood- Smith, an AI-powered system that helps users explore mood possibilities for their message and create advocacy campaigns that are mood-consistent across dimensions. To achieve this, MoodSmith uses emotive language and plotlines for scripts, artistic style and color palette for visuals, and positivity and energy for audio. Our studies show that MoodSmith can effectively achieve a variety of moods, and the produced videos are consistent across media dimensions. 
    more » « less
  3. Aboelhadid, Shawky M (Ed.)
    The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts. 
    more » « less
  4. The Southern Ocean plays a vital role in global CO2uptake, but the magnitude and even the sign of the flux remain uncertain, and the influence of phytoplankton phenology is underexplored. This study focuses on the West Antarctic Peninsula, a region experiencing rapid climate change, to examine shifts in seasonal carbon uptake. Using 20 years of in situ air‐sea CO2flux and satellite‐derived Chlorophyll‐a, we observe that the seasonal cycles of both air‐sea CO2flux and Chlorophyll‐a intensify poleward. The amplitude of the seasonal cycle of the non‐thermal component of surface ocean pCO2increases with increasing latitude, while the amplitude of the thermal component remains relatively stable. Pronounced biological uptake occurs over the shelf in austral summer despite reduced CO2solubility in warmer waters, which typically limits carbon uptake through physical processes. These findings underscore the prominence of biological mechanisms in regulating carbon fluxes in this rapidly changing region. 
    more » « less
  5. This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p < 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p > 0.05). There was a significant difference between ovulating and non-ovulating cycles (p < 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 (μS), respectively. 
    more » « less