The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, menstruation was primarily studied through survey results; however, as menstrual tracking mobile apps become more widely adopted, they provide an increasingly large, content-rich source of menstrual health experiences and behaviors over time. By exploring a database of user-tracked observations from the Clue app by BioWink GmbH of over 378,000 users and 4.9 million natural cycles, we show that self-reported menstrual tracker data can reveal statistically significant relationships between per-person cycle length variability and self-reported qualitative symptoms. A concern for self-tracked data is that they reflect not only physiological behaviors, but also the engagement dynamics of app users. To mitigate such potential artifacts, we develop a procedure to exclude cycles lacking user engagement, thereby allowing us to better distinguish true menstrual patterns from tracking anomalies. We uncover that women located at different ends of the menstrual variability spectrum, based on the consistency of their cycle length statistics, exhibit statistically significant differences in their cycle characteristics and symptom tracking patterns. We also find that cycle and period length statistics are stationary over the app usage timeline across the variability spectrum. The symptoms that we identifymore »
- Publication Date:
- NSF-PAR ID:
- 10219235
- Journal Name:
- Nature Human Behaviour
- ISSN:
- 2397-3374
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Aboelhadid, Shawky M (Ed.)The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Importantmore »
-
Abstract The Amazon River basin contains a vast diversity of lotic habitats and accompanying hydrological regimes. Further understanding the spatial distribution of flow regimes across the Amazon can be useful for recognizing riverine ecohydrological processes and informing river management and conservation, especially in areas with limited or inconsistent streamflow monitoring.
This study compares four inductive approaches for classifying streamflow regimes across the Amazon using an unprecedented compilation of streamflow records from Bolivia, Brazil, Colombia, Ecuador, and Peru.
Inductive classification schemes use attributes of streamflow data to categorize river reaches into similar classes, which then may be generalized to understand streamflow behaviour at the basin scale. In this study, classification was accomplished through hierarchical clustering of 67 flow metrics calculated using indicators of hydrologic alteration (IHA) and daily streamflow data from median annual hydrographs (MAHs) for 404 stations (representing >7,000 station‐years) across five Amazonian countries.
Classification was performed using both flow magnitude‐inclusive and flow magnitude‐independent datasets. For flow magnitude‐independent methods, optimal solutions included six or seven primary hydrological classes for IHA and MAH datasets; for approaches that retained magnitude, variance was sufficiently large to prevent convergence to a specific number of classes.
Across methods, class membership was strongly associated with the timing, frequency, and ratemore »
The methodology applied provides a data‐driven approach for classifying flow regimes based on observed data. When coupled with ecological knowledge and expertise, these classifications can be used to develop ecohydrologically informed and management‐relevant conservation practices.
-
Abstract STUDY QUESTION To what extent does the use of mobile computing apps to track the menstrual cycle and the fertile window influence fecundability among women trying to conceive? SUMMARY ANSWER After adjusting for potential confounders, use of any of several different apps was associated with increased fecundability ranging from 12% to 20% per cycle of attempt. WHAT IS KNOWN ALREADY Many women are using mobile computing apps to track their menstrual cycle and the fertile window, including while trying to conceive. STUDY DESIGN, SIZE, DURATION The Pregnancy Study Online (PRESTO) is a North American prospective internet-based cohort of women who are aged 21–45 years, trying to conceive and not using contraception or fertility treatment at baseline. PARTICIPANTS/MATERIALS, SETTING, METHODS We restricted the analysis to 8363 women trying to conceive for no more than 6 months at baseline; the women were recruited from June 2013 through May 2019. Women completed questionnaires at baseline and every 2 months for up to 1 year. The main outcome was fecundability, i.e. the per-cycle probability of conception, which we assessed using self-reported data on time to pregnancy (confirmed by positive home pregnancy test) in menstrual cycles. On the baseline and follow-up questionnaires, women reportedmore »
-
Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »