Emotion is vital to information and message processing, playing a key role in attitude formation. Consequently, creating a mood that evokes an emotional response is essential to any compelling piece of outreach communication. Many nonprofits and charities, despite having established messages, face challenges in creating advocacy campaign videos for social media. It requires significant creative and cognitive efforts to ensure that videos achieve the desired mood across multiple dimensions: script, visuals, and audio. We introduce Mood- Smith, an AI-powered system that helps users explore mood possibilities for their message and create advocacy campaigns that are mood-consistent across dimensions. To achieve this, MoodSmith uses emotive language and plotlines for scripts, artistic style and color palette for visuals, and positivity and energy for audio. Our studies show that MoodSmith can effectively achieve a variety of moods, and the produced videos are consistent across media dimensions.
more »
« less
Daily, weekly, seasonal and menstrual cycles in women’s mood, behaviour and vital signs
Dimensions of human mood, behaviour and vital signs cycle over multiple timescales. However, it remains unclear which dimensions are most cyclical, and how daily, weekly, seasonal and menstrual cycles compare in magnitude. The menstrual cycle remains particularly understudied because, not being synchronized across the population, it will be averaged out unless menstrual cycles can be aligned before analysis. Here, we analyse 241 million observations from 3.3 million women across 109 countries, tracking 15 dimensions of mood, behaviour and vital signs using a women’s health mobile app. Out of the daily, weekly, seasonal and menstrual cycles, the menstrual cycle had the greatest magnitude for most of the measured dimensions of mood, behaviour and vital signs. Mood, vital signs and sexual behaviour vary most substantially over the course of the menstrual cycle, while sleep and exercise behaviour remain more constant. Menstrual cycle effects are directionally consistent across countries.
more »
« less
- PAR ID:
- 10219235
- Date Published:
- Journal Name:
- Nature Human Behaviour
- ISSN:
- 2397-3374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aboelhadid, Shawky M (Ed.)The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts.more » « less
-
The Southern Ocean plays a vital role in global CO2uptake, but the magnitude and even the sign of the flux remain uncertain, and the influence of phytoplankton phenology is underexplored. This study focuses on the West Antarctic Peninsula, a region experiencing rapid climate change, to examine shifts in seasonal carbon uptake. Using 20 years of in situ air‐sea CO2flux and satellite‐derived Chlorophyll‐a, we observe that the seasonal cycles of both air‐sea CO2flux and Chlorophyll‐a intensify poleward. The amplitude of the seasonal cycle of the non‐thermal component of surface ocean pCO2increases with increasing latitude, while the amplitude of the thermal component remains relatively stable. Pronounced biological uptake occurs over the shelf in austral summer despite reduced CO2solubility in warmer waters, which typically limits carbon uptake through physical processes. These findings underscore the prominence of biological mechanisms in regulating carbon fluxes in this rapidly changing region.more » « less
-
This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p 0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p 0.05). There was a significant difference between ovulating and non-ovulating cycles (p 0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 (μS), respectively.more » « less
-
Abstract. Seasonal snowpack is an essential component in the hydrological cycle and plays a significant role in supplying water resources to downstream users. Yet the snow water equivalent (SWE) in seasonal snowpacks, and its space–time variation, remains highly uncertain, especially over mountainous areas with complex terrain and sparse observations, such as in High Mountain Asia (HMA). In this work, we assessed the spatiotemporal distribution of seasonal SWE, obtained from a new 18-year HMA Snow Reanalysis (HMASR) dataset, as part of the recent NASA High Mountain Asia Team (HiMAT) effort. A Bayesian snow reanalysis scheme previously developed to assimilate satellite-derived fractional snow-covered area (fSCA) products from Landsat and MODIS platforms has been applied to develop the HMASR dataset (at a spatial resolution of 16 arcsec (∼500 m) and daily temporal resolution) over the joint Landsat–MODIS period covering water years (WYs) 2000–2017. Based on the results, the HMA-wide total SWE volume is found to be around163 km3 on average and ranges from 114 km3 (WY2001) to 227 km3 (WY2005) when assessed over 18 WYs. The most abundant snowpacks are found in the northwestern basins (e.g., Indus, Syr Darya and Amu Darya) that are mainly affected by the westerlies, accounting for around 66 % of total seasonal SWE volume. Seasonal snowpack in HMA is depicted by snow accumulating through October to March and April, typically peaking around April and depleting in July–October, with variations across basins and WYs. When examining the elevational distribution over the HMA domain, seasonal SWE volume peaks at mid-elevations (around 3500 m), with over 50 % of the volume stored above 3500 m. Above-average amounts of precipitation causes significant overall increase in SWE volumes across all elevations, while an increase in air temperature (∼1.5 K) from cooler to normal conditions leads to an redistribution in snow storage from lower elevations to mid-elevations. This work brings new insight into understanding the climatology and variability of seasonal snowpack over HMA, with the regional snow reanalysis constrained by remote-sensing data, providing a new reference dataset for future studies of seasonal snow and how it contributes to the water cycle and climate over the HMA region.more » « less
An official website of the United States government

