skip to main content

Title: Conceptual frameworks facilitate integration for transdisciplinary urban science
Abstract There are urgent calls for developing a comprehensive and globally-relevant urban science that emphasizes convergence among disciplines and practice. Advancing theory and conceptual frameworks is critical to developing a new urban systems science. We synthesize five frameworks that address features identified in calls for global urban science. The frameworks address the overarching urban conditions of complexity, diffuseness, connectivity, and diversity of cities across the globe. The frameworks also help evaluate how a project or study may advance sustainability. The metacity concept, a spatially scalable representation of mosaic change in urban systems, demonstrates how the frameworks apply to increasingly extensive, spatially heterogeneous, and dynamic urban regions. The metacity concept helps avoid static and isolated plans and management approaches and provides a conceptual foundation for an interdisciplinary urban systems science. The frameworks suggest a practical checklist that may help interventions, strategies, and research better align with goals for transforming urban systems toward sustainability.  more » « less
Award ID(s):
1934933 1444755 1637661 1927167 1927468 1855277
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
npj Urban Sustainability
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The field of sustainability science has grown significantly over the past two decades in terms of both conceptual development and empirical research. Systems-focused analysis is critical to building generalizable knowledge in the field, yet much relevant research does not take a systems view. Systems-oriented analytical frameworks can help researchers conceptualize and analyze sustainability-relevant systems, but existing frameworks may lack access or utility outside a particular research tradition. In this article, we outline the human–technical–environmental (HTE) framework, which provides analysts from different disciplinary backgrounds and fields of study a common way to advance systems-focused research on sustainability issues. We detail a step-by-step guide for the application of the HTE framework through a matrix-based approach for identifying system components, studying interactions among system components, and examining interventions targeting components and/or their interactions for the purpose of advancing sustainability. We demonstrate the applicability of the HTE framework and the matrix-based approach through an analysis of an empirical case of coal-fired power plants and mercury pollution, which is relevant to large-scale sustainability transitions. Based on this analysis, we identify specific insights related to the applicability of upstream and downstream leverage points, connections between energy markets and the use of pollution control technologies, and the importance of institutions fitting both biophysical dynamics and socioeconomic and political dynamics. Further application of the HTE framework and the identification of insights can help develop systems-oriented analysis, and inform societal efforts to advance sustainability, as well as contribute to the formulation of empirically grounded middle-range theories related to sustainability systems and sustainability transitions. We conclude with a discussion of areas for further development and application of the HTE framework.

    more » « less
  2. Abstract

    Water security is essential for human well‐being and is among the biggest challenges in environmental governance. Governments and nonprofit organizations alike are gaining increased appreciation for the contributions of intact ecosystems to water security, whereas conservation scientists call for decisive action to address the dire condition of earth's freshwater ecosystems and biodiversity. Stakeholder‐based, Habermasian decision‐making frameworks such as integrated water resources management (IWRM) are widely used to equitably manage complex water systems, and ecologists have developed increasingly sophisticated frameworks (e.g., environmental flows) to quantify and anticipate the ecological outcomes of water management decisions. IWRM implementation is criticized for being excessively top‐down whereas ecological frameworks in water decision‐making can fail to account for the cultural and societal values of ecosystems, and it remains unclear how best to connect the desired bottom‐up implementation of IWRM with the expert‐based, top‐down structure of hydro‐ecological research. We revisit and elaborate upon the ecological stakeholder analog (ESA) concept, which treats ecological phenomena (e.g., species and processes) as stakeholders and ecological information as interests and positions with respect to water management. We then illustrate how ESAs can address the many calls to improve environmental flows and IWRM strategies by improving their integration, and how established conceptual frameworks from stakeholder theory applies readily to ecological stakeholders.

    more » « less
  3. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  4. This article offers a conceptual understanding and easily applicable guidelines for sustainable urban infrastructure design by focusing on the demand for and supply of the services provided by seven urban infrastructure systems. For more than 10,000 years, cities have evolved continuously, often shaped by the challenges they had to face. Similarly, we can imagine that cities will have to evolve again in the future to address their current challenges. Specifically, urban infrastructure will need to adapt and use less energy and fewer resources while becoming more resilient. In this article, starting with a definition of sustainability, two urban infrastructure sustainability principles (SP) are introduced: (i) controlling the demand and (ii) increasing the supply within reason, which are then applied to seven urban infrastructure systems: water, electricity, district heating and cooling and natural gas, telecommunications, transport, solid waste, and buildings. From these principles, a four-step urban infrastructure design (UID) process is compiled that can be applied to any infrastructure project: (i) controlling the demand to reduce the need for new infrastructure, (ii) integrating a needed service within the current infrastructure, (iii) making new infrastructure multifunctional to provide for other infrastructure systems, and (iv) designing for specific interdependencies and decentralizing infrastructure if possible. Overall, by first recognizing that urban infrastructure systems are inherently integrated and interdependent, this article offers several strategies and guidelines to help design sustainable urban infrastructure systems. 
    more » « less
  5. Growing in popularity, the circular city framework is at the leading-edge of a larger and older transitional dialogue which envisions regenerative, circular, and symbiotic systems as the future of urban sustainability. The need for more research supporting the implementation of such concepts has been often noted in literature. To help address this gap, this holistic review assesses a range of pertinent sustainability frameworks as a platform to identify actionable strategies which can be leveraged to support and implement circular city goals. This assessment is grounded in a holistic overview of related frameworks across interdisciplinary and scalar domains including circular city, the food-water-energy nexus, circular economy, bioeconomy, industrial symbiosis, regenerative design, and others. Building on these interrelationships, the applied strategies espoused within these publications are synthesized and assessed in the context of circular city implementation. From an initial 250 strategies identified in literature, thirty-four general implementation strategies across six thematic areas are distinguished and discussed, finding strong overlaps in implementation strategies between frameworks, and opportunities to further develop and harness these synergies to advance circular city toward sustainable urban futures. 
    more » « less