skip to main content


Search for: All records

Award ID contains: 1444755

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.

     
    more » « less
  2. Abstract

    Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS.

     
    more » « less
  3. Abstract

    With projected temperature increases and extreme events due to climate change for many regions of the world, characterizing the impacts of these emerging hazards on water distribution systems is necessary to identify and prioritize adaptation strategies for ensuring reliability. To aid decision-making, new insights are needed into how water distribution system reliability to climate-driven heat will change, and the proactive maintenance strategies available to combat failures. To this end, we present the model Perses, a framework that joins a water distribution network hydraulic solver with reliability models of physical assets or components to estimate temperature increase-driven failures and resulting service outages in the long term. A theoretical case study is developed using Phoenix, Arizona temperature profiles, a city with extreme temperatures and a rapidly expanding infrastructure. By end-of-century under hotter futures there are projected to be 1%–5% more pump failures, 2%–5% more PVC pipe failures, and 3%–7% more iron pipe failures (RCP 4.5–8.5) than a baseline historical temperature profile. Service outages, which constitute inadequate pressure for domestic and commercial use are projected to increase by 16%–26% above the baseline under maximum temperature conditions. The exceedance of baseline failures, when compounded across a large metro region, reveals potential challenges for budgeting, management, and maintenance. An exploration of the mitigation potential of adaptation strategies shows that expedited repair times are capable of offsetting the additional outages from climate change, but will come with a cost.

     
    more » « less
  4. Abstract

    The City of Atlanta, Georgia, is a fast-growing urban area with substantial economic and racial inequalities, subject to the impacts of climate change and intensifying heat extremes. Here, we analyze the magnitude, distribution, and predictors of heat exposure across the City of Atlanta, within the boundaries of Fulton County. Additionally, we evaluate the extent to which identified heat exposure is addressed in Atlanta climate resilience governance. First, land surface temperature (LST) was mapped to identify the spatial patterns of heat exposure, and potential socioeconomic and biophysical predictors of heat exposure were assessed. Second, government and city planning documents and policies were analyzed to assess whether the identified heat exposure and risks are addressed in Atlanta climate resilience planning. The average LST of Atlanta’s 305 block groups ranges from 23.7 °C (low heat exposure) in vegetated areas to 31.5 °C (high heat exposure) in developed areas across 13 summer days used to evaluate the spatial patterns of heat exposure (June–August, 2013–2019). In contrast to nationwide patterns, census block groups with larger historically marginalized populations (predominantly Black, less education, lower income) outside of Atlanta’s urban core display weaker relationships with LST (slopes ≈ 0) and are among the cooler regions of the city. Climate governance analysis revealed that although there are few strategies for heat resilience in Atlanta (n= 12), the majority are focused on the city’s warmest region, the urban core, characterized by the city’s largest extent of impervious surface. These strategies prioritize protecting and expanding the city’s urban tree canopy, which has kept most of Atlanta’s marginalized communities under lower levels of outdoor heat exposure. Such a tree canopy can serve as an example of heat resilience for many cities across the United States and the globe.

     
    more » « less
  5. Abstract

    Infrastructure systems must change to match the growing complexity of the environments they operate in. Yet the models of governance and the core technologies they rely on are structured around models of relative long-term stability that appear increasingly insufficient and even problematic. As the environments in which infrastructure function become more complex, infrastructure systems must adapt to develop a repertoire of responses sufficient to respond to the increasing variety of conditions and challenges. Whereas in the past infrastructure leadership and system design has emphasized organization strategies that primarily focus on exploitation (e.g., efficiency and production, amenable to conditions of stability), in the future they must create space for exploration, the innovation of what the organization is and does. They will need to create the abilities to maintain themselves in the face of growing complexity by creating the knowledge, processes, and technologies necessary to engage environment complexity. We refer to this capacity asinfrastructure autopoiesis. In doing so infrastructure organizations should focus on four key tenets. First, a shift to sustained adaptation—perpetual change in the face of destabilizing conditions often marked by uncertainty—and away from rigid processes and technologies is necessary. Second, infrastructure organizations should pursue restructuring their bureaucracies to distribute more resources and decisionmaking capacity horizontally, across the organization’s hierarchy. Third, they should build capacity for horizon scanning, the process of systematically searching the environment for opportunities and threats. Fourth, they should emphasize loose fit design, the flexibility of assets to pivot function as the environment changes. The inability to engage with complexity can be expected to result in a decoupling between what our infrastructure systems can do and what we need them to do, and autopoietic capabilities may help close this gap by creating the conditions for a sufficient repertoire to emerge.

     
    more » « less
  6. Abstract

    Urban social–ecological–technological systems (SETS) are dynamic and respond to climate pressures. Change involves alterations to land and resource management, social organization, infrastructure, and design. Research often focuses on how climate change impacts urban SETS or on the characteristics of urban SETS that promote climate resilience. Yet passive approaches to urban climate change adaptation may disregard active SETS change by urban residents, planners, and policymakers that could be opportunities for adaptation. Here, we use evidence of urban social, ecological, and technological change to address how SETS change opens windows of opportunity to improve climate change adaptation.

     
    more » « less
  7. Abstract

    Infrastructure are at the center of three trends: accelerating human activities, increasing uncertainty in social, technological, and climatological factors, and increasing complexity of the systems themselves and environments in which they operate. Resilience theory can help infrastructure managers navigate increasing complexity. Engineering framings of resilience will need to evolve beyond robustness to consider adaptation and transformation, and the ability to handle surprise. Agility and flexibility in both physical assets and governance will need to be emphasized, and sensemaking capabilities will need to be reoriented. Transforming infrastructure is necessary to ensuring that core systems keep pace with a changing world.

     
    more » « less
  8. Abstract

    Infrastructure must be resilient to both known and unknown disturbances. In the past, resilient infrastructure design efforts have tended to focus on principles of robustness and recovery against projected failures. This framing has developed independently from resilience principles in biological and ecological systems. As such, there are open questions as to whether the approaches of natural systems that lead to adaptation and transformation are relevant to engineered systems. To improve engineered system resilience, infrastructure managers may benefit from considering and applying a set of “Life's Principles”—design principles and patterns drawn from the field of biomimicry. Nature has long withstood disturbances within and beyond previous experience. Infrastructure resilience theory and practice are assessed against Life's Principles identifying alignments, contradictions, contentions, and gaps. Resilient infrastructure theory, which emphasizes a need for flexible and agile infrastructure, aligns well with Life's Principles, addressing each principle and most sub‐principles (excluding “breakdown products into benign components” and “do chemistry in water”). Meanwhile, resilient infrastructure practice only occasionally aligns with Life's Principles and contradicts five out of six principles. As resilience theory advances, Life's Principles offer support in broadening how infrastructure managers approach resilience, and by using biomimicry, infrastructure managers can be better equipped to deploy resilience for complexity and uncertainty.

     
    more » « less
  9. Abstract

    Floods are important disturbances to urban socio‐eco‐technical systems and their meteorological drivers are projected to increase through the century due to global climate change. Urban flood models are numerical models that have the capability of representing the features of urban ecosystems and the mechanisms of flooding that impact them. They have the potential to play a critical role in flood risk assessment, operational response, and resilience planning, but existing models remain limited in their capability to represent integrated flooding processes in urban areas and provide the credible quantitative information needed to support risk assessment and resilience practice. Research to advance model development, facilitate intensive watershed monitoring for model parameterization and validation, and support collaboration between researchers and practitioners should be prioritized. This will represent a substantial, expensive effort, but will still be of great value as cities are faced with urgent challenges posed by climate change in coming decades.

     
    more » « less
  10. Free, publicly-accessible full text available October 1, 2024