Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Wildfires and post-fire debris flows (PFDFs) threaten California infrastructure and are evolving with climate change. There is significant focus on the threat of utility-caused wildfires because electric power equipment has triggered wildfires leading to major damage. California’s ambitious climate targets rely on electrification of transport and industry. As the state modernizes its electricity system to support increased demand, it must consider future climate hazards. To date, there is no rigorous characterization of the intersection of future fire threat, PFDFs, and electrical infrastructure. We estimate wildfire and PFDF threat to transmission lines, substations, and power generators in California and assess vulnerability of electric utilities by intersecting electrical infrastructure and current and future wildfire and PFDF threat, using two global climate models and two representative concentration pathways. We find clean, dispatchable power generators (e.g. hydroelectric and nuclear) and small, publicly-owned utilities are most vulnerable. Increasing threats will require additional resources and consideration of future threat distribution.more » « lessFree, publicly-accessible full text available March 4, 2026
-
Abstract Cities are concentrators of complex, multi‐sectoral interactions. As keystones in the interconnected human‐Earth system, cities have an outsized impact on the Earth system. We describe a multi‐lens framework for organizing our understanding of the complexity of urban systems and scientific research on urban systems, which may be useful for natural system scientists exploring the ways their work can be made more actionable. We then describe four critical dimensions along which improvements are needed to advance the urban research that addresses urgent climate challenges: (a) solutions‐oriented research, (b) equity‐centered assessments which rely on fine‐scale human and ecological data, (c) co‐production of knowledge, and (d) better integration of human and natural systems occurring through theory, observation, and modeling.more » « less
-
Abstract This paper positions urban ecology as increasingly conversant with multiple perspectives and methods for understanding the functions and qualities of diverse cities and urban situations. Despite progress in the field, we need clear pathways for positioning, connecting and synthesising specific knowledge and to make it speak to more systemic questions about cities and the life within them. These pathways need to be able to make use of diverse sources of information to better account for the diverse relations between people, other species and the ecological, social, cultural, economic, technical and increasingly digital structures that they are embedded in. Grounded in a description of the systemic knowledge needed, we propose five complementary and often connected approaches for building cumulative systemic understandings, and a framework for connecting and combining different methods and evidence. The approaches and the framework help position urban ecology and other fields of study as entry points to further advance interdisciplinary synthesis and open up new fields of research.more » « less
-
Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains.more » « less
-
Abstract New York City (NYC) faces many challenges in the coming decades due to climate change and its interactions with social vulnerabilities and uneven urban development patterns and processes. This New York City Panel on Climate Change (NPCC) report contributes to the Panel's mandate to advise the city on climate change and provide timely climate risk information that can inform flexible and equitable adaptation pathways that enhance resilience to climate change. This report presents up‐to‐date scientific information as well as updated sea level rise projections of record. We also present a new methodology related to climate extremes and describe new methods for developing the next generation of climate projections for the New York metropolitan region. Future work by the Panel should compare the temperature and precipitation projections presented in this report with a subset of models to determine the potential impact and relevance of the “hot model” problem. NPCC4 expects to establish new projections‐of‐record for precipitation and temperature in 2024 based on this comparison and additional analysis. Nevertheless, the temperature and precipitation projections presented in this report may be useful for NYC stakeholders in the interim as they rely on the newest generation of global climate models.more » « less
-
Abstract We ask how environmental justice and urban ecology have influenced one another over the past 25 years in the context of the US Long-Term Ecological Research (LTER) program and Baltimore Ecosystem Study (BES) project. BES began after environmental justice emerged through activism and scholarship in the 1980s but spans a period of increasing awareness among ecologists and environmental practitioners. The work in Baltimore provides a detailed example of how ecological research has been affected by a growing understanding of environmental justice. The shift shows how unjust environmental outcomes emerge and are reinforced over time by systemic discrimination and exclusion. We do not comprehensively review the literature on environmental justice in urban ecology but do present four brief cases from the Caribbean, Africa, and Asia, to illustrate the global relevance of the topic. The example cases demonstrate the necessity for continuous engagement with communities in addressing environmental problem solving.more » « less
-
Abstract This perspective emerged from ongoing dialogue among ecologists initiated by a virtual workshop in 2021. A transdisciplinary group of researchers and practitioners conclude that urban ecology as a science can better contribute to positive futures by focusing on relationships, rather than prioritizing urban structures. Insights from other relational disciplines, such as political ecology, governance, urban design, and conservation also contribute. Relationality is especially powerful given the need to rapidly adapt to the changing social and biophysical drivers of global urban systems. These unprecedented dynamics are better understood through a relational lens than traditional structural questions. We use three kinds of coproduction—of the social-ecological world, of science, and of actionable knowledge—to identify key processes of coproduction within urban places. Connectivity is crucial to relational urban ecology. Eight themes emerge from the joint explorations of the paper and point toward social action for improving life and environment in urban futures.more » « less
-
Abstract Disruption of legacy infrastructure systems by novel digital and connected technologies represents not simply the rise of cyberphysical systems as hybrid physical and digital assets but, ultimately, the integration of legacy systems into a new cognitive ecosystem. This cognitive ecosystem, an ecology of massive data flows, artificial intelligence, institutional and intellectual structures, and connected technologies, is poised to alter how humans and artificial intelligence understand and control our world. Infrastructure managers need to be ready for this paradigm shift, recognizing their systems are increasingly being absorbed into an emerging suite of data, analytical tools, and decisionmaking technologies that will fundamentally restructure how legacy systems behave and are controlled, how decisions are made, and most importantly how workers interact with the systems. Infrastructure managers must restructure their organizations and engage in cross-organizational sensemaking if they are to be capable of navigating the complexity of the cognitive ecosystem. The cognitive ecosystem is fundamentally poised to change what infrastructures are, necessitating the need for managers to take a close look at the functions and actions of their own systems. The continuing evolution of the Anthropocene and the cognitive ecosystem has profound implications for infrastructure education. A sustained commitment to change is necessary that restructures and reorients infrastructure organizations within the cognitive ecosystem, where knowledge is generated, and control of services is wielded by myriad stakeholders.more » « less
-
Abstract Faced with destabilizing conditions in the Anthropocene, infrastructure resilience modeling remains challenged to confront increasingly complex conditions toward quickly and meaningfully advancing adaptation. Data gaps, increasingly interconnected systems, and accurate behavior estimation (across scales and as both gradual and cascading failure) remain challenges for infrastructure modelers. Yet novel approaches are emerging—largely independently—that, if brought together, offer significant opportunities for rapidly advancing how we understand vulnerabilities and surgically invest in resilience. Of particular promise are interdependency modeling, cascading failure modeling, and synthetic network generation. We describe a framework for integrating these three domains toward an integrated modeling framework to estimate infrastructure networks where no data exist, connect infrastructure to establish interdependencies, assess the vulnerabilities of these interconnected infrastructure to hazards, and simulate how failures may propagate across systems. We draw from the literature as an evidence base, provide a conceptual structure for implementation, and conclude by discussing the significance of such a framework and the critical tools it may provide to infrastructure researchers and managers.more » « less
-
Abstract Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS.more » « less
An official website of the United States government
