skip to main content


Title: Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce’s disease
Pierce’s disease (PD) caused by the bacterium Xylella fastidiosa is a deadly disease of grapevines. This study used 20 SSR markers to genotype 326 accessions of grape species collected from the southeastern and southwestern United States, Mexico and Costa Rica. Two hundred sixty-six of these accessions, and an additional 12 PD resistant hybrid cultivars developed from southeastern US grape species, were evaluated for PD resistance. Disease resistance was evaluated by quantifying the level of bacteria in stems and measuring PD symptoms on the canes and leaves. Both Bayesian clustering and principal coordinate analyses identified two groups with an east-west divide: group 1 consisted of grape species from the southeastern US and Mexico, and group 2 consisted of accessions collected from the southwestern US and Mexico. The Sierra Madre Oriental mountain range appeared to be a phylogeographic barrier. The state of Texas was identified as a potential hybridization zone. The hierarchal STRUCTURE analysis on each group showed clustering of unique grape species. An east-west divide was also observed for PD resistance. With the exception of Vitis candicans and V . cinerea accessions collected from Mexico, all other grape species as well as the resistant southeastern hybrid cultivars were susceptible to the disease. Southwestern US grape accessions from drier desert regions showed stronger resistance to the disease. Strong PD resistance was observed within three distinct genetic clusters of V . arizonica which is adapted to drier environments and hybridizes freely with other species across its wide range.  more » « less
Award ID(s):
1741627
NSF-PAR ID:
10219515
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Chiang, Tzen-Yuh
Date Published:
Journal Name:
PLOS ONE
Volume:
15
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0243445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    North America is a large continent with extensive climatic, geological, soil, and biological diversity. As biota faces threat from habitat destruction and climate change, making a quantitative assessment of biodiversity becomes critically important. Rapid digitization of plant specimen records and accumulation of DNA sequence data enable a much‐needed broad synthesis of species occurrences with phylogenetic data. In this study, the first such synthesis of a flora from such a large and diverse part of the world is attempted, all seed plants from the North American continent (here defined to include Canada, United States, and Mexico), with a focus on examining phylogenetic diversity and endemism. We collected digitized plant specimen records and chose a coarse grain for analysis, recognizing that this grain is currently necessary for reasonable completeness per sampling unit. We found that raw richness and endemism patterns largely support previous hypotheses of biodiversity hotspots. The application of phylogenetic metrics and a randomization test revealed novel results, including a significant phylogenetic clustering across the continent, a striking east–west geographical difference in the distribution of branch lengths, and the discovery of centers of neo‐ and paleoendemism in Mexico, the southwestern USA, and the southeastern USA. Finally, our examination of phylogenetic beta diversity provides a new approach to compare centers of endemism. We discuss the empirical challenges of working at the continental scale and the need for more sampling across large parts of the continent, for both DNA data for terminal taxa and spatial data for poorly understood regions, to confirm and extend these results.

     
    more » « less
  2. Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine ( Vitis vinifera L. ssp. vinifera ). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine. 
    more » « less
  3. Morrell, P (Ed.)
    Abstract Muscadinia rotundifolia, the muscadine grape, has been cultivated for centuries in the southeastern United States. M. rotundifolia is resistant to many of the pathogens that detrimentally affect Vitis vinifera, the grape species commonly used for winemaking. For this reason, M. rotundifolia is a valuable genetic resource for breeding. Single-molecule real-time reads were combined with optical maps to reconstruct the two haplotypes of each of the 20 M. rotundifolia cv. Trayshed chromosomes. The completeness and accuracy of the assembly were confirmed using a high-density linkage map. Protein-coding genes were annotated using an integrated and comprehensive approach. This included using full-length cDNA sequencing (Iso-Seq) to improve gene structure and hypothetical spliced variant predictions. Our data strongly support that Muscadinia chromosomes 7 and 20 are fused in Vitis and pinpoint the location of the fusion in Cabernet Sauvignon and PN40024 chromosome 7. Disease-related gene numbers in Trayshed and Cabernet Sauvignon were similar, but their clustering locations were different. A dramatic expansion of the Toll/Interleukin-1 Receptor-like Nucleotide-Binding Site Leucine-Rich Repeat (TIR-NBS-LRR) class was detected on Trayshed chromosome 12 at the Resistance to Uncinula necator 1 (RUN1)/Resistance to Plasmopara viticola 1 (RPV1) locus, which confers strong dominant resistance to powdery and downy mildews. A genome browser, annotation, and Blast tool for Trayshed are available at www.grapegenomics.com. 
    more » « less
  4. Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species. 
    more » « less
  5. Using a reliable and accurate method to phenotype disease incidence and severity is essential to unravel the complex genetic architecture of disease resistance in plants, and to develop disease resistant cultivars. Genome-wide association studies (GWAS) involve phenotyping large numbers of accessions, and have been used for a myriad of traits. In field studies, genetic accessions are phenotyped across multiple environments and replications, which takes a significant amount of labor and resources. Deep Learning (DL) techniques can be effective for analyzing image-based tasks; thus DL methods are becoming more routine for phenotyping traits to save time and effort. This research aims to conduct GWAS on sudden death syndrome (SDS) of soybean [ Glycine max L. (Merr.)] using disease severity from both visual field ratings and DL-based (using images) severity ratings collected from 473 accessions. Images were processed through a DL framework that identified soybean leaflets with SDS symptoms, and then quantified the disease severity on those leaflets into a few classes with mean Average Precision of 0.34 on unseen test data. Both visual field ratings and image-based ratings identified significant single nucleotide polymorphism (SNP) markers associated with disease resistance. These significant SNP markers are either in the proximity of previously reported candidate genes for SDS or near potentially novel candidate genes. Four previously reported SDS QTL were identified that contained a significant SNPs, from this study, from both a visual field rating and an image-based rating. The results of this study provide an exciting avenue of using DL to capture complex phenotypic traits from images to get comparable or more insightful results compared to subjective visual field phenotyping of traits for disease symptoms. 
    more » « less