skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of presentation method and simulation fidelity on psychomotor education in a bimanual metrology training simulation
In this study, we empirically evaluated the effects of presentation method and simulation fidelity on task performance and psychomotor skills acquisition in an immersive bimanual simulation towards precision metrology education. In a 2 × 2 experiment design, we investigated a large-screen immersive display (LSID) with a head-mounted display (HMD), and the presence versus absence of gravity. Advantages of the HMD include interacting with the simulation in a more natural manner as compared to using a large-screen immersive display due to the similarities between the interactions afforded in the virtual compared to the real-world task. Suspending the laws of physics may have an effect on usability and in turn could affect learning outcomes. Our dependent variables consisted of a pre and post cognition questionnaire, quantitative performance measures, perceived workload and system usefulness, and a psychomotor assessment to measure to what extent transfer of learning took place from the virtual to the real world. Results indicate that the HMD condition was preferable to the immersive display in several metrics while the no-gravity condition resulted in users adopting strategies that were not advantageous for task performance.  more » « less
Award ID(s):
1104181
PAR ID:
10219553
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2017 IEEE Symposium on 3D User Interfaces (3DUI)
Page Range / eLocation ID:
59 to 68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective Evaluate and model the advantage of a situation awareness (SA) supported by an augmented reality (AR) display for the ground-based joint terminal attack Controller (JTAC), in judging and describing the spatial relations between objects in a hostile zone. Background The accurate world-referenced description of relative locations of surface objects, when viewed from an oblique slant angle (aircraft, observation post) is hindered by (1) the compression of the visual scene, amplified at a lower slang angle, (2) the need for mental rotation, when viewed from a non-northerly orientation. Approach Participants viewed a virtual reality (VR)-simulated four-object scene from either of two slant angles, at each of four compass orientations, either unaided, or aided by an AR head-mounted display (AR-HMD), depicting the scene from a top-down (avoiding compression) and north-up (avoiding mental rotation) perspective. They described the geographical layout of four objects within the display. Results Compared with the control condition, that condition supported by the north-up SA display shortened the description time, particularly on non-northerly orientations (9 s, 30% benefit), and improved the accuracy of description, particularly for the more compressed scene (lower slant angle), as fit by a simple computational model. Conclusion The SA display provides large, significant benefits to this critical phase of ground-air communications in managing an attack—as predicted by the task analysis of the JTAC. Application Results impact the design of the AR-HMD to support combat ground-air communications and illustrate the magnitude by which basic cognitive principles “scale up” to realistically simulated real-world tasks such as search and rescue. 
    more » « less
  2. Feedback-based iterative refinement is important in the development of any human-computer interface. The present work aims to evaluate and iteratively refine an immersive learning environment called Scale Worlds (SW), delivered via a head-mounted display (HMD). SW is a virtual learning environment encompassing scientific entities of a wide range of sizes that enables students an embodied experience while learning size and scale. Five usability experts performed think aloud while carrying out four interactive tasks in SW and compared three different design options during A/B testing. Improvement features based on the feedback from an earlier SW usability evaluation as well as HMD-specific features were examined. Usability experts completed the post-study system usability questionnaire, the NASA task load index, and a bipolar laddering survey that collected subjective perception of specific SW features. Results show that the progress panel (an improvement feature) was informative while the instructions (another improvement feature) caused clutter. The experts indicated clear usability preferences during A/B testing, which helped resolve three sets of theory-usability conflicts. The overall assessment of SW paved a path for theory-usability balance and provided valuable insights for designing and evaluating usability in immersive virtual learning environments. 
    more » « less
  3. This paper investigates a concept called Virtual Ability Simulation (VAS) for people with disability due to Multiple Sclerosis (MS), in a virtual reality (VR) environment. In a VAS people with a disability perform tasks that are made easier in the virtual environment (VE) compared to the real world. We hypothesized that putting people with disabilities in a VAS will increase confidence and enable more efficient task completion. To investigate this hypothesis, we conducted a within-subjects experiment in which participants performed a virtual task called ''kick the ball'' in two different conditions: a no gain condition (i.e., same difficulty as in the real world) and a rotational gain condition (i.e., physically easier than the real world but visually the same). The results from our study suggest that VAS increased participants' confidence which in turn enables them to perceive the difficulty of the same task easier. 
    more » « less
  4. null (Ed.)
    Fully immersive virtual reality, with the unique ability to replicate the real world, could potentially aid in real-time communication. Geographically separated teams can collaborate using virtual reality. To test the viability of using virtual reality for remote collaboration, we designed a system called “WeRSort” where teams sorted cards in a virtual environment. Participants performed the task as a team of 2 in one of three conditions-controls-only condition, generic embodiment and full embodiment. Objective measures of performance, time and percentage match with master cards showed no significant difference. Subjective measures of presence and system usability also showed no statistical significance. However, overall work-load obtained from NASA-TLX showed that fully immersive virtual reality resulted in lower workload in comparison with the other two. Qualitative data was collected and analyzed to understand collaboration using the awareness evaluation model. 
    more » « less
  5. Abstract Augmented reality (AR) enhances the user’s perception of the real environment by superimposing virtual images generated by computers. These virtual images provide additional visual information that complements the real-world view. AR systems are rapidly gaining popularity in various manufacturing fields such as training, maintenance, assembly, and robot programming. In some AR applications, it is crucial for the invisible virtual environment to be precisely aligned with the physical environment to ensure that human users can accurately perceive the virtual augmentation in conjunction with their real surroundings. The process of achieving this accurate alignment is known as calibration. During some robotics applications using AR, we observed instances of misalignment in the visual representation within the designated workspace. This misalignment can potentially impact the accuracy of the robot’s operations during the task. Based on the previous research on AR-assisted robot programming systems, this work investigates the sources of misalignment errors and presents a simple and efficient calibration procedure to reduce the misalignment accuracy in general video see-through AR systems. To accurately superimpose virtual information onto the real environment, it is necessary to identify the sources and propagation of errors. In this work, we outline the linear transformation and projection of each point from the virtual world space to the virtual screen coordinates. An offline calibration method is introduced to determine the offset matrix from the head-mounted display (HMD) to the camera, and experiments are conducted to validate the improvement achieved through the calibration process. 
    more » « less