skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: I Felt Like We Were Actually Going Somewhere: Adapting Summer Professional Development for Elementary Teachers to a Virtual Experience During COVID-19
In fall 2019, the National Science Foundation awarded Southern Oregon University a two-year Computer Science for All Researcher Practitioner Partnership grant focused on integrating computational thinking (CT) into the K'5 instruction of general elementary and elementary bilingual teachers. This experience report highlights the process of transitioning one essential component of the project an elementary teacher summer institute (SI) from in-person to online due to COVID-19. This report covers the approach the team took to designing the SI to work virtually, the challenges encountered, the experiences of the 15 teachers involved through observations and surveys, and the opportunities for refinement. This report will be of potential interest for other computer science (CS) education researchers who also may be working with elementary teachers to incorporate CS and CT activities into their instruction.  more » « less
Award ID(s):
1923633
PAR ID:
10219678
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SIGCSE '21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
739 to 745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  2. null (Ed.)
    The increased push for access to computer science (CS) at the K-12 level has been argued as a way to broaden participation in computing. At the elementary level, computational thinking (CT) has been used as a framework for bringing CS ideas into the classroom and educating teachers about how they can integrate CT into their daily instruction. A number of these projects have made equity a central goal of their work by working in schools with diverse racial, linguistic, and economic diversity. However, we know little about whether and how teachers equitably engage students in CT during their classroom instruction– particularly during science and math lessons. In this paper, we present an approach to analyzing classroom instructional videos using the EQUIP tool (https://www.equip.ninja/). The purpose of this tool is to examine the quantity and quality of students’ contributions during CT-integrated math and science lessons and how it differs based on demographic markers. We highlight this approach using classroom video observation from four teachers and discuss future work in this area. 
    more » « less
  3. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findings from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision 
    more » « less
  4. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences. 
    more » « less
  5. null (Ed.)
    A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging in CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All. 
    more » « less