skip to main content


Title: Interpreting Robust Optimization via Adversarial Influence Functions
Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization.  more » « less
Award ID(s):
2015378
NSF-PAR ID:
10219817
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
119
ISSN:
2640-3498
Page Range / eLocation ID:
2464-2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Singh, A (Ed.)
    Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization. 
    more » « less
  2. null (Ed.)
    Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity — a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization. 
    more » « less
  3. null (Ed.)
    Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation. OT, however, is very sensitive to outliers (samples with large noise) in the data since in its objective function, every sample, including outliers, is weighed similarly due to the marginal constraints. To remedy this issue, robust formulations of OT with unbalanced marginal constraints have previously been proposed. However, employing these methods in deep learning problems such as GANs and domain adaptation is challenging due to the instability of their dual optimization solvers. In this paper, we resolve these issues by deriving a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications. We demonstrate the effectiveness of our formulation in two applications of GANs and domain adaptation. Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions. In particular, our optimization computes weights for training samples reflecting how difficult it is for those samples to be generated in the model. In domain adaptation, our robust OT formulation leads to improved accuracy compared to the standard adversarial adaptation methods. 
    more » « less
  4. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.

     
    more » « less
  5. Srinivasan, Kathiravan (Ed.)
    Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) models do not consider the crucial issue of robustness. A data set can be contaminated in various ways, including human error in labeling or annotation, distributional data shift, and malicious adversaries who wish to degrade the algorithm’s performance. It has been shown that Distributionally Robust Optimization (DRO) is resilient against various types of noise and perturbations. To fill this gap, we introduce a new listwise LTR model called Distributionally Robust Multi-output Regression Ranking (DRMRR) . Different from existing methods, the scoring function of DRMRR was designed as a multivariate mapping from a feature vector to a vector of deviation scores, which captures local context information and cross-document interactions. In this way, we are able to incorporate the LTR metrics into our model. DRMRR uses a Wasserstein DRO framework to minimize a multi-output loss function under the most adverse distributions in the neighborhood of the empirical data distribution defined by a Wasserstein ball. We present a compact and computationally solvable reformulation of the min-max formulation of DRMRR. Our experiments were conducted on two real-world applications: medical document retrieval and drug response prediction, showing that DRMRR notably outperforms state-of-the-art LTR models. We also conducted an extensive analysis to examine the resilience of DRMRR against various types of noise: Gaussian noise, adversarial perturbations, and label poisoning. Accordingly, DRMRR is not only able to achieve significantly better performance than other baselines, but it can maintain a relatively stable performance as more noise is added to the data. 
    more » « less