skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Provably Robust Conformal Prediction with Improved Efficiency
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to 4.36×, 5.46×, and 16.9× respectively and provide practical robustness guarantee.  more » « less
Award ID(s):
2107189
PAR ID:
10518464
Author(s) / Creator(s):
; ;
Publisher / Repository:
ICLR 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees against adversarially chosen data. It is computationally lightweight -- comparable to split conformal prediction -- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. It gives stronger than marginal coverage guarantees in two ways. First, it gives threshold calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space -- possibly intersecting -- and the coverage guarantees also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations. 
    more » « less
  2. Hand signals are the most widely used, feasible, and device-free communication method in manufacturing plants, airport ramps, and other noisy or voice-prohibiting environments. Enabling IoT agents, such as robots, to recognize and communicate by hand signals will facilitate human-machine collaboration for the emerging “Industry 5.0.” While many prior works succeed in hand signal recognition, few can rigorously guarantee the accuracy of their predictions. This project proposes a method that builds on the theory of conformal prediction (CP) to provide statistical guarantees on hand signal recognition accuracy and, based on it, measure the uncertainty in this communication process. It utilizes a calibration set with a few representative samples to ensure that trained models provide a conformal prediction set that reaches or exceeds the truth worth and trustworthiness at a user-specified level. Subsequently, the uncertainty in the recognition process can be detected by measuring the length of the conformal prediction set. Furthermore, the proposed CP-based method can be used with IoT models without fine-tuning as an out-of-the-box and promising lightweight approach to modeling uncertainty. Our experiments show that the proposed conformal recognition method can achieve accurate hand signal prediction in novel scenarios. When selecting an error level α = 0.10, it provided 100% accuracy for out-of-distribution test sets. 
    more » « less
  3. Existing algorithms for online conformal prediction -- guaranteeing marginal coverage in adversarial settings -- are variants of online gradient descent (OGD), but their analyses of worst-case coverage do not follow from the regret guarantee of OGD. What is the relationship between no-regret learning and online conformal prediction? We observe that although standard regret guarantees imply marginal coverage in i.i.d. settings, this connection fails as soon as we either move to adversarial environments or ask for group conditional coverage. On the other hand, we show a tight connection between threshold calibrated coverage and swap-regret in adversarial settings, which extends to group-conditional (multi-valid) coverage. We also show that algorithms in the follow the perturbed leader family of no regret learning algorithms (which includes online gradient descent) can be used to give group-conditional coverage guarantees in adversarial settings for arbitrary grouping functions. Via this connection we analyze and conduct experiments using a multi-group generalization of the ACI algorithm of Gibbs & Candes [2021] 
    more » « less
  4. Conformal prediction is a powerful tool for uncertainty quantification, but its application to time-series data is constrained by the violation of the exchangeability assumption. Current solutions for time-series prediction typically operate in the output space and rely on manually selected weights to address distribution drift, leading to overly conservative predictions. To enable dynamic weight learning in the semantically rich latent space, we introduce a novel approach called Conformalized Time Series with Semantic Features (CT-SSF). CT-SSF utilizes the inductive bias in deep representation learning to dynamically adjust weights, prioritizing semantic features relevant to the current prediction. Theoretically, we show that CT-SSF surpasses previous methods defined in the output space. Experiments on synthetic and benchmark datasets demonstrate that CT-SSF significantly outperforms existing state-of-the-art (SOTA) conformal prediction techniques in terms of prediction efficiency while maintaining a valid coverage guarantee. 
    more » « less
  5. In this paper, we focus on the problem of conformal prediction with conditional guarantees. Prior work has shown that it is impossible to construct nontrivial prediction sets with full conditional coverage guarantees. A wealth of research has considered relaxations of full conditional guarantees, relying on some predefined uncertainty structures. Departing from this line of thinking, we propose Partition Learning Conformal Prediction (PLCP), a framework to improve conditional validity of prediction sets through learning uncertainty-guided features from the calibration data. We implement PLCP efficiently with alternating gradient descent, utilizing off-the-shelf machine learning models. We further analyze PLCP theoretically and provide conditional guarantees for infinite and finite sample sizes. Finally, our experimental results over four real-world and synthetic datasets show the superior performance of PLCP compared to state-of-the-art methods in terms of coverage and length in both classification and regression scenarios. 
    more » « less