skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nucleation in a liquid droplet
The droplet-based microreactors in microfluidic systems have been used to synthesize nanocrystals of a variety of metals and semiconductors, which involves the nucleation and growth processes. Considering the limited numbers of solvent atoms and solute atoms/particles in a stationary droplet, we derive analytical expressions of the changes of the Gibbs free energy and the Helmholtz free energy for the concurrent formation of multiple microclusters of the same size in the liquid droplet. Both the changes of the Gibbs free energy and the Helmholtz free energy are dependent on the ratio of the number of microclusters to the solvent atoms and the interface energy between the solution and the microclusters. Using the change of the free energy, which is an approximation of the Gibbs free energy and the Helmholtz free energy, we obtain the critical nucleation number of the solute atoms/particles in the microclusters for the concurrent nucleation of multiple nuclei of the same size. The critical nucleation number of the solute atoms/particles is dependent on the ratio of the number of nuclei in the droplet to the solvent atoms, and the maximum change of the free energy for the concurrent nucleation of multiple nuclei of the same size increases with the increase of the ratio of the number of the nuclei in the droplet to the number of the solvent atoms.  more » « less
Award ID(s):
1854554
PAR ID:
10219919
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
18
ISSN:
1463-9076
Page Range / eLocation ID:
9990 to 9997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nucleation in a dynamical environment plays an important role in the synthesis and manufacturing of quantum dots and nanocrystals. In this work, we investigate the effects of fluid flow (low Reynolds number flow) on the homogeneous nucleation in a circular microchannel in the framework of the classical nucleation theory. The contributions of the configuration entropy from the momentum-phase space and the kinetic energy and strain energy of a microcluster are incorporated in the calculation of the change of the Gibbs free energy from a flow state without a microcluster to a flow state with a microcluster. An analytical equation is derived for the determination of the critical nucleus size. Using this analytical equation, an analytical solution of the critical nucleus size for the formation of a critical liquid nucleus is found. For the formation of a critical solid nucleus, the contributions from both the kinetic energy and the strain energy are generally negligible. We perform numerical analysis of the homogeneous nucleation of a sucrose microcluster in a representative volume element of an aqueous solution, which flows through a circular microchannel. The numerical results reveal the decrease of the critical nucleus size and the corresponding work of formation of a critical nucleus with the increase of the distance to axisymmetric axis for the same numbers of solvent atoms and solute atoms/particles. 
    more » « less
  2. null (Ed.)
    Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal–ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31 P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal–ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles. 
    more » « less
  3. The microstructure of solid coatings produced by solution processing is highly dependent on the coupling between growth, solute diffusion, and solvent evaporation. Here, a quasi-2D numerical model coupling drying and solidification is used to predict the transient lateral growth of two adjacent nuclei growing toward each other. Lateral gradients of the solute and solvent influence the evolution of film thickness and solid growth rate. The important process parameters and solvent properties are captured by the dimensionless Peclet number (Pe) and the Biot number (Bi), modified by an aspect ratio defined by the film thickness and distance between nuclei. By variation of Pe and Bi, the evaporation dynamics and aspect ratio are shown to largely determine the coating quality. These findings are applied to drying thin films of crystallizing halide perovskites, demonstrating a convenient process map for capturing the relationship between the modified Bi and well defined coating regimes, which may be generalized for any solution processed thin film coating systems. 
    more » « less
  4. The Classical Nucleation Theory (CNT) has played a key role in crystal nucleation studies since the 19th century and has significantly advanced the understanding of nucleation. However, certain key assumptions of CNT, such as a compact and spherical nucleating cluster and the concept of individual diffusive jumps are questionable. The results of molecular dynamics (MD) studies of crystal nucleation in a Al 20 Ni 60 Zr 20 metallic liquid demonstrate that the nucleating cluster is neither spherical nor compact. The seeding method was employed to determine the critical cluster size and nucleation parameters from CNT, which were then compared to those derived from the Mean First Passage Time (MFPT) method. While the CNT-based nucleation rate aligns well with experimental data from similar metallic liquids, the MFPT rate differs significantly. Further, contrary to the assumption of individual jumps for atoms to join the nucleating cluster, a cooperative mechanism of attachment or detachment is observed. This is accompanied by synchronized changes in the local potential energy. Similar cooperative motion also appeared in a non-classical nucleation process, particularly during the coalescence of nuclei. 
    more » « less
  5. Abstract Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions. 
    more » « less