Summary Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
more »
« less
Evolution of Plant Hormone Response Pathways
This review focuses on the evolution of plant hormone signaling pathways. Like the chemical nature of the hormones themselves, the signaling pathways are diverse. Therefore, we focus on a group of hormones whose primary perception mechanism involves an Skp1/Cullin/F-box-type ubiquitin ligase: auxin, jasmonic acid, gibberellic acid, and strigolactone. We begin with a comparison of the core signaling pathways of these four hormones, which have been established through studies conducted in model organisms in the Angiosperms. With the advent of next-generation sequencing and advanced tools for genetic manipulation, the door to understanding the origins of hormone signaling mechanisms in plants beyond these few model systems has opened. For example, in-depth phylogenetic analyses of hormone signaling components are now being complemented by genetic studies in early diverging land plants. Here we discuss recent investigations of how basal land plants make and sense hormones. Finally, we propose connections between the emergence of hormone signaling complexity and major developmental transitions in plant evolution.
more »
« less
- Award ID(s):
- 1856741
- PAR ID:
- 10219945
- Date Published:
- Journal Name:
- Annual Review of Plant Biology
- Volume:
- 71
- Issue:
- 1
- ISSN:
- 1543-5008
- Page Range / eLocation ID:
- 327 to 353
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract RAF-like kinases, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, are central integrators of external and internal signals in plant stress responses and growth regulation. These kinases mediate signaling through multiple hormone pathways, including abscisic acid-dependent and -independent pathways, ethylene signaling, and rapid auxin responses. Unlike typical MAPKKKs that function through kinase cascades, RAF-like kinases primarily employ direct phosphorylation of downstream targets and dynamic subcellular localization to mediate specific physiological responses. Here, we review the emerging roles of RAF-like kinases in Arabidopsis thaliana, highlighting their integrative functions in hormone signaling, stress responses, and growth control. The complex interplay between different RAF-like kinase subgroups and their diverse cellular targets underscores the intricate regulatory mechanisms plants have evolved to coordinate environmental responses with development.more » « less
-
Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl Carrier Proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pathovar tomato (Pto). The mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for the biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate higher level of SA and display the corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, the methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against Pto in acp1 mutants than that in wild-type plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense.more » « less
-
Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops.more » « less
-
Extracellular ATP (eATP) signaling inArabidopsis thalianais mediated by the purinoceptor P2K1. Previous studies have clarified that the downstream transcriptional responses to eATP involve jasmonate (JA)-based signaling components such as the JA receptor (COI1) and JA-responsive bHLH transcription factors (MYCs). However, the specific contributions of JA signaling itself on eATP signaling are unexplored. Here, we report that JA primes plant responses to eATP through P2K1. Our findings show that JA treatment significantly upregulatesP2K1transcription, corroborating our observation that JA facilitates eATP-induced cytosolic calcium elevation and transcriptional reprogramming in a JA signaling-dependent manner. Additionally, we find that salicylic acid pretreatment represses eATP-induced plant response. These results suggest that JA accumulation during biotic or abiotic stresses may potentiate eATP signaling, enabling plants to better cope with subsequent stress events. Plant hormone jasmonate (JA) enhances plant responses to extracellular ATP (eATP) inArabidopsis thalianathrough a mechanism dependent on the JA receptor COI1 and the eATP receptor P2K1. The reciprocal amplification of these signals provides a mechanistic explanation for how plants effectively respond to different stress events.more » « less
An official website of the United States government

