Abstract Englacial layers in Antarctica and Greenland are indicators of the dynamic, rheological and subglacial configuration of the ice sheets. Airborne radar sounder data is the primary remote sensing solution for directly observing englacial layers and structures at the glacier-catchment to ice-sheet scale. However, when traditional along-track synthetic aperture radar (SAR) processing is applied, steep layers can disappear, limiting the detectability and interpretability of englacial layer geometry. This study provides a reconstruction algorithm to address the problem of destructive phase interference during the radargram formation. We develop and apply a novel SAR processor optimized for layer detection that enhances the Signal-to-Noise ratio (SNR) of specular reflectors. The algorithm also enables the automatic estimation of layer slope. We demonstrate the algorithm using data acquired at the Institute Ice Stream, West Antarctica.
more »
« less
A comparison of automated approaches to extracting englacial-layer geometry from radar data across ice sheets
Abstract Radar surveys across ice sheets typically measure numerous englacial layers that can often be regarded as isochrones. Such layers are valuable for extrapolating age–depth relationships away from ice-core locations, reconstructing palaeoaccumulation variability, and investigating past ice-sheet dynamics. However, the use of englacial layers in Antarctica has been hampered by underdeveloped techniques for characterising layer continuity and geometry over large distances, with techniques developed independently and little opportunity for inter-comparison of results. In this paper, we present a methodology to assess the performance of automated layer-tracking and layer-dip-estimation algorithms through their ability to propagate a correct age–depth model. We use this to assess isochrone-tracking techniques applied to two test case datasets, selected from CreSIS MCoRDS data over Antarctica from a range of environments including low-dip, continuous layers and layers with terminations. We find that dip-estimation techniques are generally successful in tracking englacial dip but break down in the upper and lower regions of the ice sheet. The results of testing two previously published layer-tracking algorithms show that further development is required to attain a good constraint of age–depth relationships away from dated ice cores. We recommend that auto-tracking techniques focus on improved linking of picked stratigraphy across signal disruptions to enable accurate determination of the Antarctic-wide age–depth structure.
more »
« less
- Award ID(s):
- 1745137
- PAR ID:
- 10219981
- Date Published:
- Journal Name:
- Annals of Glaciology
- Volume:
- 61
- Issue:
- 81
- ISSN:
- 0260-3055
- Page Range / eLocation ID:
- 234 to 241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Basal units – visibly distinct englacial structures near the ice-bed interface – warrant investigation for a number of reasons. Many are of unknown composition and origin, characteristics that could provide substantial insight into subglacial processes and ice-sheet history. Their significance, moreover, is not limited to near-bed depths; these units appear to dramatically influence the flow of surrounding ice. In order to enable improved characterization of these features, we develop and apply an algorithm that allows for the automatic detection of basal units. We use a tunable layer-optimized SAR processor to distinguish these structures from the bed, isochronous englacial layers and the ice-sheet surface, presenting a conceptual framework for the use of radio-echo character in the identification of ice-sheet features. We also outline a method by which our processor could be used to place observational constraints on basal units’ configuration, composition and provenance.more » « less
-
Radio-echo sounding (RES) has revealed an internal architecture within both the West and East Antarctic ice sheets that records their depositional, deformational and melting histories. Crucially, RES-imaged internal-reflecting horizons, tied to ice-core age–depth profiles, can be treated as isochrones that record the age–depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice dynamical processes on large scales, which are complementary to but more spatially extensive than commonly used proxy records (e.g. former ice limits constrained by cosmogenic dating or offshore sediment sequences) around Antarctica. We review the progress towards building a pan-Antarctic age–depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last 6 decades (focussing specifically on those that detected internal-reflecting horizons) and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores or modelling) the RES-imaged isochrones. We summarise the scientific applications for which Antarctica's internal architecture has been used to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) reconstruction of surface mass balance on millennial or historical timescales; (3) estimation of basal melting and geothermal heat flux from radiostratigraphy and comprehensive mapping of basal-ice units to complement inferences from other geophysical and geological methods; (4) advancement of the knowledge of volcanic activity and fallout across Antarctica; and (5) refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour and then to reduce uncertainties in projecting future ice-sheet behaviour.more » « less
-
Abstract. The Greenland and Antarctic ice sheets are covered in a layer of porous firn. Knowledge of firn structure improves our understanding of ice sheet mass balance, supra- and englacial hydrology, and ice core paleoclimate records. While macroscale firn properties, such as firn density, are relatively easy to measure in the field or lab, more intensive measurements of microstructural properties are necessary to reduce uncertainty in remote sensing observations of mass balance, model meltwater infiltration, and constrain ice age – gas age differences in ice cores. Additionally, as the duration and extent of surface melting increases, refreezing meltwater will greatly alter firn structure. Field observations of firn grain size and ice layer stratigraphy are required to test and validate physical models that simulate the ice-sheet-wide evolution of the firn layer. However, visually measuring grain size and ice layer distributions is tedious, is time-consuming, and can be subjective depending on the method. Here we demonstrate a method to systematically map firn core grain size and ice layer stratigraphy using a near-infrared hyperspectral imager (NIR-HSI; 900–1700 nm). We scanned 14 firn cores spanning ∼ 1000 km across western Greenland’s percolation zone with the NIR-HSI mounted on a linear translation stage in a cold laboratory. We leverage the relationship between effective grain size, a measure of NIR light absorption by firn grains, and NIR reflectance to produce high-resolution (0.4 mm) maps of effective grain size and ice layer stratigraphy. We show the NIR-HSI reproduces visually identified ice layer stratigraphy and infiltration ice content across all cores. Effective grain sizes change synchronously with traditionally measured grain radii with depth, although effective grains in each core are 1.5× larger on average, which is largely related to the differences in measurement techniques. To demonstrate the utility of the firn stratigraphic maps produced by the NIR-HSI, we track the 2012 melt event across the transect and assess its impact on deep firn structure by quantifying changes to infiltration ice content and grain size. These results indicate that NIR-HSI firn core analysis is a robust technique that can document deep and long-lasting changes to the firn column from meltwater percolation while quickly and accurately providing detailed firn stratigraphy datasets necessary for firn research applications.more » « less
-
Abstract An array of information about the Antarctic ice sheet can be extracted from ice-sheet internal architecture imaged by airborne ice-penetrating radar surveys. We identify, trace and date three key internal reflection horizons (IRHs) across multiple radar surveys from South Pole to Dome A, East Antarctica. Ages of ~38 ± 2.2, ~90 ± 3.6 and ~162 ± 6.7 ka are assigned to the three IRHs, with verification of the upper IRH age from the South Pole ice core. The resultant englacial stratigraphy is used to identify the locations of the oldest ice, specifically in the upper Byrd Glacier catchment and the Gamburtsev Subglacial Mountains. The distinct glaciological conditions of the Gamburtsev Mountains, including slower ice flow, low geothermal heat flux and frozen base, make it the more likely to host the oldest ice. We also observe a distinct drawdown of IRH geometry around South Pole, indicative of melting from enhanced geothermal heat flux or the removal of deeper, older ice under a previous faster ice flow regime. Our traced IRHs underpin the wider objective to develop a continental-scale database of IRHs which will constrain and validate future ice-sheet modelling and the history of the Antarctic ice sheet.more » « less
An official website of the United States government

