skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
Abstract. In the 2019/2020 austral summer, the surface melt duration andextent on the northern George VI Ice Shelf (GVIIS) was exceptional comparedto the 31 previous summers of distinctly lower melt. This finding is basedon analysis of near-continuous 41-year satellite microwave radiometer andscatterometer data, which are sensitive to meltwater on the ice shelfsurface and in the near-surface snow. Using optical satellite imagery fromLandsat 8 (2013 to 2020) and Sentinel-2 (2017 to 2020), record volumes ofsurface meltwater ponding were also observed on the northern GVIIS in2019/2020, with 23 % of the surface area covered by 0.62 km3 of ponded meltwater on 19 January. These exceptional melt andsurface ponding conditions in 2019/2020 were driven by sustained airtemperatures ≥0 ∘C for anomalously long periods (55 to 90 h)from late November onwards, which limited meltwater refreezing.The sustained warm periods were likely driven by warm, low-speed (≤7.5 m s−1) northwesterly and northeasterly winds and not by foehn windconditions, which were only present for 9 h total in the 2019/2020 meltseason. Increased surface ponding on ice shelves may threaten theirstability through increased potential for hydrofracture initiation; a riskthat may increase due to firn air content depletion in response tonear-surface melting.  more » « less
Award ID(s):
1841607
PAR ID:
10220023
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
2
ISSN:
1994-0424
Page Range / eLocation ID:
909 to 925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability. 
    more » « less
  2. Abstract. The Greenland Ice Sheet (GrIS) rapid mass loss is primarily driven by an increase in meltwater runoff, which highlights the importance of understanding the formation, evolution, and impact of meltwater features on the ice sheet. Buried lakes are meltwater features that contain liquid water and exist under layers of snow, firn, and/or ice. These lakes are invisible in optical imagery, challenging the analysis of their evolution and implication for larger GrIS dynamics and mass change. Here, we present a method that uses a convolutional neural network, a deep learning method, to automatically detect buried lakes across the GrIS. For the years 2018 and 2019 (which represent low- and high-melt years, respectively), we compare total areal extent of both buried and surface lakes across six regions, and we use a regional climate model to explain the spatial and temporal differences. We find that the total buried lake extent after the 2019 melt season is 56 % larger than after the 2018 melt season across the entire ice sheet. Northern Greenland has the largest increase in buried lake extent after the 2019 melt season, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that different processes are responsible for buried lake formation in different regions of the ice sheet. For example, in southwest Greenland, buried lakes often appear on the surface during the previous melt season, indicating that these meltwater features form when surface lakes partially freeze and become insulated as snowfall buries them. Conversely, in southeast Greenland, most buried lakes never appear on the surface, indicating that these features may form due to downward percolation of meltwater and/or subsurface penetration of shortwave radiation. We provide support for these processes via the use of a physics-based snow model. This study provides additional perspective on the potential role of meltwater on GrIS dynamics and mass loss. 
    more » « less
  3. Abstract Glaciers of the McMurdo dry valleys (MDVs) Antarctica are the main source of streamflow in this polar desert. Because summer air temperatures hover near 0°C small changes in the energy balance strongly affect meltwater generation. Here we demonstrate that increased surface roughness, which alters the turbulent transfer of energy between the ice surface and atmosphere, yields a detectable increase in meltwater runoff. At low elevations on the glaciers, basin‐like topography became significantly rougher over 13 years between repeat lidar surveys, yielding greater melt. In contrast, the smoother ice at higher elevation exhibited no detectable change in roughness. We pose a conceptual model of the cycle of glacier surface change as a result of climate forcing whereby glacier surfaces transition from being dominated by sublimation to becoming increasingly melt‐dominated, which is reversible under prolonged cool periods. This research advances our understanding of warm season effects on polar glaciers. 
    more » « less
  4. Abstract. Over recent decades, the Greenland Ice Sheet (GrIS) has lost mass through increased melting and solid ice discharge into the ocean. Surface meltwater features such as supraglacial lakes (SGLs), channels and slush are becoming more abundant as a result of the former and are implicated as a control on the latter when they drain. It is not yet clear, however, how these different surface hydrological features will respond to future climate changes, and it is likely that GrIS surface melting will continue to increase as the Arctic warms. Here, we use Sentinel-2 and Landsat 8 optical satellite imagery to compare the distribution and evolution of meltwater features (SGLs, channels, slush) in the Russell–Leverett glacier catchment, southwest Greenland, in relatively high (2019) and low (2018) melt years. We show that (1) supraglacial meltwater covers a greater area and extends further inland to higher elevations in 2019 than in 2018; (2) slush – generally disregarded in previous Greenland surface hydrology studies – is far more widespread in 2019 than in 2018; (3) the supraglacial channel system is more interconnected in 2019 than in 2018; (4) a greater number and larger total area of SGLs drained in 2019, although draining SGLs were, on average, deeper and more voluminous in 2018; (5) small SGLs (≤0.0495 km2) – typically disregarded in previous studies – form and drain in both melt years, although this behaviour is more prevalent in 2019; and (6) a greater proportion of SGLs refroze in 2018 compared to 2019. This analysis provides new insight into how the ice sheet responds to significant melt events, and how a changing climate may impact meltwater feature characteristics, SGL behaviour and ice dynamics in the future. 
    more » « less
  5. As climate warms and the transition from a perennial to a seasonal Arctic sea-ice cover is imminent, understanding melt ponding is central to understanding changes in the new Arctic. National Aeronautics and Space Administration (NASA)’s Ice, Cloud and land Elevation Satellite (ICESat-2) has the capacity to provide measurements and monitoring of the onset of melt in the Arctic and on melt progression. Yet ponds are currently not identified on the ICESat-2 standard sea-ice products, in which only a single surface is determined. The objective of this article is to introduce a mathematical algorithm that facilitates automated detection of melt ponds in the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) data, retrieval of two surface heights, pond surface and bottom, and measurements of depth and width of melt ponds. With ATLAS, ICESat-2 carries the first spaceborne multibeam micropulse photon-counting laser altimeter system, operating at 532-nm frequency. ATLAS data are recorded as clouds of discrete photon points. The Density-Dimension Algorithm for bifurcating sea-ice reflectors (DDA-bifurcate-seaice) is an autoadaptive algorithm that solves the problem of pond detection near the 0.7-m nominal along-track spacing of ATLAS data, utilizing the radial basis function for calculation of a density field and a threshold function that automatically adapts to changes in the background, apparent surface reflectance, and some instrument effects. The DDA-bifurcate-seaice is applied to large ICESat-2 datasets from the 2019 and 2020 melt seasons in the multiyear Arctic sea-ice region. Results are evaluated by comparison with those from a manually forced algorithm. 
    more » « less