The topic of this paper is the airborne evaluation of ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) measurement capabilities and surface-height-determination over crevassed glacial terrain, with a focus on the geodetical accuracy of geophysical data collected from a helicopter. To obtain surface heights over crevassed and otherwise complex ice surface, ICESat-2 data are analyzed using the density-dimension algorithm for ice surfaces (DDA-ice), which yields surface heights at the nominal 0.7 m along-track spacing of ATLAS data. As the result of an ongoing surge, Negribreen, Svalbard, provided an ideal situation for the validation objectives in 2018 and 2019, because many different crevasse types and morphologically complex ice surfaces existed in close proximity. Airborne geophysical data, including laser altimeter data (profilometer data at 905 nm frequency), differential Global Positioning System (GPS), Inertial Measurement Unit (IMU) data, on-board-time-lapse imagery and photographs, were collected during two campaigns in summers of 2018 and 2019. Airborne experiment setup, geodetical correction and data processing steps are described here. To date, there is relatively little knowledge of the geodetical accuracy that can be obtained from kinematic data collection from a helicopter. Our study finds that (1) Kinematic GPS data collection with correction in post-processing yields higher accuracies than Real-Time-Kinematic (RTK) data collection. (2) Processing of only the rover data using the Natural Resources Canada Spatial Reference System Precise Point Positioning (CSRS-PPP) software is sufficiently accurate for the sub-satellite validation purpose. (3) Distances between ICESat-2 ground tracks and airborne ground tracks were generally better than 25 m, while distance between predicted and actual ICESat-2 ground track was on the order of 9 m, which allows direct comparison of ice-surface heights and spatial statistical characteristics of crevasses from the satellite and airborne measurements. (4) The Lasertech Universal Laser System (ULS), operated at up to 300 m above ground level, yields full return frequency (400 Hz) and 0.06–0.08 m on-ice along-track spacing of height measurements. (5) Cross-over differences of airborne laser altimeter data are −0.172 ± 2.564 m along straight paths, which implies a precision of approximately 2.6 m for ICESat-2 validation experiments in crevassed terrain. (6) In summary, the comparatively light-weight experiment setup of a suite of small survey equipment mounted on a Eurocopter (Helicopter AS-350) and kinematic GPS data analyzed in post-processing using CSRS-PPP leads to high accuracy repeats of the ICESat-2 tracks. The technical results (1)–(6) indicate that direct comparison of ice-surface heights and crevasse depths from the ICESat-2 and airborne laser altimeter data is warranted. Numerical evaluation of height comparisons utilizes spatial surface roughness measures. The final result of the validation is that ICESat-2 ATLAS data, analyzed with the DDA-ice, facilitate surface-height determination over crevassed terrain, in good agreement with airborne data, including spatial characteristics, such as surface roughness, crevasse spacing and depth, which are key informants on the deformation and dynamics of a glacier during surge. 
                        more » 
                        « less   
                    
                            
                            Automated Detection and Depth Determination of Melt Ponds on Sea Ice in ICESat-2 ATLAS Data—The Density-Dimension Algorithm for Bifurcating Sea-Ice Reflectors (DDA-Bifurcate-Seaice)
                        
                    
    
            As climate warms and the transition from a perennial to a seasonal Arctic sea-ice cover is imminent, understanding melt ponding is central to understanding changes in the new Arctic. National Aeronautics and Space Administration (NASA)’s Ice, Cloud and land Elevation Satellite (ICESat-2) has the capacity to provide measurements and monitoring of the onset of melt in the Arctic and on melt progression. Yet ponds are currently not identified on the ICESat-2 standard sea-ice products, in which only a single surface is determined. The objective of this article is to introduce a mathematical algorithm that facilitates automated detection of melt ponds in the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) data, retrieval of two surface heights, pond surface and bottom, and measurements of depth and width of melt ponds. With ATLAS, ICESat-2 carries the first spaceborne multibeam micropulse photon-counting laser altimeter system, operating at 532-nm frequency. ATLAS data are recorded as clouds of discrete photon points. The Density-Dimension Algorithm for bifurcating sea-ice reflectors (DDA-bifurcate-seaice) is an autoadaptive algorithm that solves the problem of pond detection near the 0.7-m nominal along-track spacing of ATLAS data, utilizing the radial basis function for calculation of a density field and a threshold function that automatically adapts to changes in the background, apparent surface reflectance, and some instrument effects. The DDA-bifurcate-seaice is applied to large ICESat-2 datasets from the 2019 and 2020 melt seasons in the multiyear Arctic sea-ice region. Results are evaluated by comparison with those from a manually forced algorithm. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10473350
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Geoscience and Remote Sensing
- Volume:
- 61
- ISSN:
- 0196-2892
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.more » « less
- 
            Abstract Melt ponds forming on Arctic sea ice in summer significantly reduce the surface albedo and impact the heat and mass balance of the sea ice. Therefore, their areal coverage, which can undergo rapid change, is crucial to monitor. We present a revised method to extract melt pond fraction (MPF) from Sentinel‐2 satellite imagery, which is evaluated by MPF products from higher‐resolution satellite and helicopter‐borne imagery. The analysis of melt pond evolution during the MOSAiC campaign in summer 2020, shows a split of the Central Observatory (CO) into a level ice and a highly deformed ice part, the latter of which exhibits exceptional early melt pond formation compared to the vicinity. Average CO MPFs are 17% before and 23% after the major drainage. Arctic‐wide analysis of MPF for years 2017–2021 shows a consistent seasonal cycle in all regions and years.more » « less
- 
            Abstract Comparing helicopter‐borne surface temperature maps in winter and optical orthomosaics in summer from the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one‐dimensional steady‐state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold‐based classification achieves a correct classification for 41% of the melt ponds.more » « less
- 
            We investigate sea ice conditions during the 2020 melt season, when warm air temperature anomalies in spring led to early melt onset, an extended melt season, and the second-lowest September minimum Arctic ice extent observed. We focus on the region of the most persistent ice cover and examine melt pond depth retrieved from Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) using two distinct algorithms in concert with a time series of melt pond fraction and ice concentration derived from Sentinel-2 imagery to obtain insights about the melting ice surface in three dimensions. We find the melt pond fraction derived from Sentinel-2 in the study region increased rapidly in June, with the mean melt pond fraction peaking at 16 % ± 6 % on 24 June 2020, followed by a slow decrease to 8 % ± 6 % by 3 July, and remained below 10 % for the remainder of the season through 15 September. Sea ice concentration was consistently high (>95 %) at the beginning of the melt season until 4 July, and as floes disintegrated, it decreased to a minimum of 70 % on 30 July and then became more variable, ranging from 75 % to 90 % for the remainder of the melt season. Pond depth increased steadily from a median depth of 0.40 m ± 0.17 m in early June and peaked at 0.97 m ± 0.51 m on 16 July, even as melt pond fraction had already started to decrease. Our results demonstrate that by combining high-resolution passive and active remote sensing we now have the ability to track evolving melt conditions and observe changes in the sea ice cover throughout the summer season.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    