Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ice shelves regulate ice sheet dynamics, with their stability influenced by horizontal flow and vertical flexure. MacAyeal and others (2021) developed the theoretical foundation for a coupled flow-flexure model (the “M21 model”), combining the Shallow Shelf Approximation with thin-beam flexure, providing a computationally efficient tool for studying phenomena like ice shelf rumpling and lake drainage. However, the M21 model relies on proprietary software, is unstable under compressive flow conditions, and does not incorporate fracture processes critical for capturing ice-shelf damage evolution. We present an open-source version of the M21 model addressing these limitations. Using the free Python librariesFiredrakeandicepack, we introduce a plastic failure mechanism, effectively limiting bending stresses and thereby stabilizing the model. This enhancement expands the viscous M21 model into a viscoplastic flow-flexure-fracture (3F) framework. We validate the 3F model through test cases replicating key ice shelf phenomena, including marginal rumpling and periodic surface meltwater drainage. By offering this tool as open-source software, we aim to enable broader adoption, with the ultimate aim of representing surface meltwater induced flow-flexure-fracture processes in large-scale ice sheet models.more » « lessFree, publicly-accessible full text available September 12, 2026
-
Abstract Supraglacial lakes on the Greenland Ice Sheet (GrIS) can impact both the ice sheet surface mass balance and ice dynamics. Thus, understanding the evolution and dynamics of supraglacial lakes is important to provide improved parameterizations for ice sheet models to enable better projections of future GrIS changes. In this study, we utilize the growing inventory of optical and microwave satellite imagery to automatically determine the fate of Greenland‐wide supraglacial lakes during 2018 and 2019; low and high melt seasons respectively. We develop a novel time series classification method to categorize lakes into four classes: (a) Refreezing, (b) rapidly draining, (c) slowly draining, and (d) buried. Our findings reveal significant interannual variability between the two melt seasons, with a notable increase in the proportion of draining lakes, and a particular dominance of slowly draining lakes, in 2019. We also find that as mean lake depth increases, so does the percentage of lakes that drain, indicating that lake depth may influence hydrofracture potential. We further observe rapidly draining lakes at higher elevations than the previously hypothesized upper‐elevation hydrofracture limit (1,600 m), and that non‐draining lakes are generally deeper during the lower melt 2018 season. Our automatic classification approach and the resulting 2‐year ice‐sheet‐wide data set provide new insights into GrIS supraglacial lake dynamics and evolution, offering a valuable resource for future research.more » « less
-
Abstract Global Navigation Satellite System (GNSS) observations and ground-based timelapse photography obtained over the record-high 2019/2020 melt season are combined to characterise the flexure and fracture behaviour of a previously formed doline on George VI Ice Shelf, Antarctica. The GNSS timeseries shows a downward vertical displacement of the doline centre with respect to the doline rim of ~60 cm in response to loading from a central meltwater lake. The GNSS data also show a tens-of-days episode of rapid-onset, exponentially decaying horizontal displacement, where the horizontal distance between the doline rim and its centre increases by ~70 cm. We interpret this event as the initiation and/or widening of a fracture, aided by stress perturbations associated with meltwater loading in the doline basin. Viscous flexure modelling indicates that the meltwater loading generates tensile surface stresses exceeding 75 kPa. This, together with our timelapse photos of circular fractures around the doline, suggests the first such documentation of meltwater-loading-induced ‘ring fracture’ formation on an ice shelf, equivalent to the fracture type proposed as part of the chain-reaction lake drainage process involved in the 2002 breakup of the Larsen B Ice Shelf.more » « less
-
Abstract Surface melting occurs across many of Antarctica’s ice shelves, mainly during the austral summer. The onset, duration, area and fate of surface melting varies spatially and temporally, and the resultant surface meltwater is stored as ponded water (lakes) or as slush (saturated firn or snow), with implications for ice-shelf hydrofracture, firn air content reduction, surface energy balance and thermal evolution. This study applies a machine-learning method to the entire Landsat 8 image catalogue to derive monthly records of slush and ponded water area across 57 ice shelves between 2013 and 2021. We find that slush and ponded water occupy roughly equal areas of Antarctica’s ice shelves in January, with inter-regional variations in partitioning. This suggests that studies that neglect slush may substantially underestimate the area of ice shelves covered by surface meltwater. Furthermore, we found that adjusting the surface albedo in a regional climate model to account for the lower albedo of surface meltwater resulted in 2.8 times greater snowmelt across five representative ice shelves. This extra melt is currently unaccounted for in regional climate models, which may lead to underestimates in projections of ice-sheet melting and ice-shelf stability.more » « less
-
Abstract Antarctic firn is critical for ice-shelf stability because it stores meltwater that would otherwise pond on the surface. Ponded meltwater increases the risk of hydrofracture and subsequent potential ice-shelf collapse. Here, we use output from a firn model to build a computationally simpler emulator that uses a random forest to predict ice-shelf effective firn air content, which considers impermeable ice layers that make deeper parts of the firn inaccessible to meltwater, based on climate conditions. We find that summer air temperature and precipitation are the most important climatic features for predicting firn air content. Based on the climatology from an ensemble of Earth System Models, we find that the Larsen C Ice Shelf is most at risk of firn air depletion during the 21st century, while the larger Ross and Ronne-Filchner ice shelves are unlikely to experience substantial firn air content change. This work demonstrates the utility of emulation for computationally efficient estimations of complicated ice sheet processes.more » « less
-
Abstract Antarctic ice‐shelf stability is threatened by surface melt, which has been implicated in several ice‐shelf collapse events over recent decades. Here, we first analyze cumulative days of wet snow/ice status (“melt days”) for melt seasons from 1980 to 2021 over Antarctica's ice shelves using passive and active microwave satellite observations. As these observations do not directly reveal meltwater volumes, we calculate these using the physics‐based multi‐layer snow model SNOWPACK, driven by the global climate‐reanalysis model Modern‐Era Retrospective analysis for Research and Applications Version 2. We find a strong non‐linear relationship between melt days and meltwater production volume. SNOWPACK's calculation of melt days shows agreement with observations of both cumulative days, and spatial and interannual variability. Highest melt rates are found on the Peninsula ice shelves, particularly in the 1992/1993 and 1994/1995 austral summers. Over all ice shelves, SNOWPACK calculates a small, but significant, decreasing trend in both annual melt days and meltwater production volume over the 41 years.more » « less
-
Abstract Increasing surface melt has been implicated in the collapse of several Antarctic ice shelves over the last few decades, including the collapse of Larsen B Ice Shelf over a period of just a few weeks in 2002. The speed at which an ice shelf disintegrates strongly determines the subsequent loss of grounded ice and sea level rise, but the controls on collapse speed are not well understood. Here we show, using a novel cellular automaton model, that there is an intrinsic speed limit on ice shelf collapse through cascades of interacting melt pond hydrofracture events. Though collapse speed increases with the area of hydrofracture influence, the typical flexural length scales of Antarctic ice shelves ensure that hydrofracture interactions remain localized. We argue that the speed at which Larsen B Ice Shelf collapsed was caused by a season of anomalously high surface meltwater production.more » « less
-
Abstract Between 1992 and 2017, the Antarctic Ice Sheet (AIS) lost ice equivalent to 7.6 ± 3.9 mm of sea level rise. AIS mass loss is mitigated by ice shelves that provide a buttress by regulating ice flow from tributary glaciers. However, ice‐shelf stability is threatened by meltwater ponding, which may initiate, or reactivate preexisting, fractures, currently poorly understood processes. Here, through ground penetrating radar (GPR) analysis over a buried lake in the grounding zone of an East Antarctic ice shelf, we present the first field observations of a lake drainage event in Antarctica via vertical fractures. Concurrent with the lake drainage event, we observe a decrease in surface elevation and an increase in Sentinel‐1 backscatter. Finally, we suggest that fractures that are initiated or reactivated by lake drainage events in a grounding zone will propagate with ice flow onto the ice shelf itself, where they may have implications for its stability.more » « less
-
Free, publicly-accessible full text available August 1, 2026
-
Abstract. Over recent decades, the Greenland Ice Sheet (GrIS) has lost mass through increased melting and solid ice discharge into the ocean. Surface meltwater features such as supraglacial lakes (SGLs), channels and slush are becoming more abundant as a result of the former and are implicated as a control on the latter when they drain. It is not yet clear, however, how these different surface hydrological features will respond to future climate changes, and it is likely that GrIS surface melting will continue to increase as the Arctic warms. Here, we use Sentinel-2 and Landsat 8 optical satellite imagery to compare the distribution and evolution of meltwater features (SGLs, channels, slush) in the Russell–Leverett glacier catchment, southwest Greenland, in relatively high (2019) and low (2018) melt years. We show that (1) supraglacial meltwater covers a greater area and extends further inland to higher elevations in 2019 than in 2018; (2) slush – generally disregarded in previous Greenland surface hydrology studies – is far more widespread in 2019 than in 2018; (3) the supraglacial channel system is more interconnected in 2019 than in 2018; (4) a greater number and larger total area of SGLs drained in 2019, although draining SGLs were, on average, deeper and more voluminous in 2018; (5) small SGLs (≤0.0495 km2) – typically disregarded in previous studies – form and drain in both melt years, although this behaviour is more prevalent in 2019; and (6) a greater proportion of SGLs refroze in 2018 compared to 2019. This analysis provides new insight into how the ice sheet responds to significant melt events, and how a changing climate may impact meltwater feature characteristics, SGL behaviour and ice dynamics in the future.more » « less
An official website of the United States government
