skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications of Polynomial Systems
CBMS notes from a series of 10 Lectures by David Cox, with supplemental lectures by C. D'Andrea, A. Dickenstein, J. Hauenstein, H. Schenck, J. Sidman. Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert.  more » « less
Award ID(s):
2048906
PAR ID:
10220108
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
CBMS Lecture notes 134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jarden, Moshe; Shaska, Tony (Ed.)
    This book is a collection of articles on Abelian varieties and number theory dedicated to Gerhard Frey's 75th birthday. It contains original articles by experts in the area of arithmetic and algebraic geometry. 
    more » « less
  2. Abstract Adjoint systems are widely used to inform control, optimization, and design in systems described by ordinary differential equations or differential-algebraic equations. In this paper, we explore the geometric properties and develop methods for such adjoint systems. In particular, we utilize symplectic and presymplectic geometry to investigate the properties of adjoint systems associated with ordinary differential equations and differential-algebraic equations, respectively. We show that the adjoint variational quadratic conservation laws, which are key to adjoint sensitivity analysis, arise from (pre)symplecticity of such adjoint systems. We discuss various additional geometric properties of adjoint systems, such as symmetries and variational characterizations. For adjoint systems associated with a differential-algebraic equation, we relate the index of the differential-algebraic equation to the presymplectic constraint algorithm of Gotay et al. (J Math Phys 19(11):2388–2399, 1978). As an application of this geometric framework, we discuss how the adjoint variational quadratic conservation laws can be used to compute sensitivities of terminal or running cost functions. Furthermore, we develop structure-preserving numerical methods for such systems using Galerkin Hamiltonian variational integrators (Leok and Zhang in IMA J. Numer. Anal. 31(4):1497–1532, 2011) which admit discrete analogues of these quadratic conservation laws. We additionally show that such methods are natural, in the sense that reduction, forming the adjoint system, and discretization all commute, for suitable choices of these processes. We utilize this naturality to derive a variational error analysis result for the presymplectic variational integrator that we use to discretize the adjoint DAE system. Finally, we discuss the application of adjoint systems in the context of optimal control problems, where we prove a similar naturality result. 
    more » « less
  3. Hacon, Christopher; Xu, Chenyang (Ed.)
    Arising from the 2022 Japan-US Mathematics Institute, this book covers a range of topics in modern algebraic geometry, including birational geometry, classification of varieties in positive and zero characteristic, K-stability, Fano varieties, foliations, the minimal model program and mathematical physics. The volume includes survey articles providing an accessible introduction to current areas of interest for younger researchers. Research papers, written by leading experts in the field, disseminate recent breakthroughs in areas related to the research of V.V. Shokurov, who has been a source of inspiration for birational geometry over the last forty years. 
    more » « less
  4. The problem of geolocation of a radiofrequency transmitter via time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is given as a system of polynomial equations. This allows for the use of homotopy continuation-based methods from numerical algebraic geometry. A novel geolocation algorithm employs numerical algebraic geometry techniques in conjunction with the random sample consensus (RANSAC) method. This is all developed and demonstrated in the setting of only FDOA measurements, without loss of generality. Additionally, the problem formulation as polynomial systems immediately provides lower bounds on the number of receivers or measurements required for the solution set to consist of only isolated points. 
    more » « less
  5. Montiel, M; Agustín-Aquino, M; Gómez, F; Kastine, J; Lluis-Puebla, E; Milam, B. (Ed.)
    This book constitutes the thoroughly refereed proceedings of the 8th International Conference on Mathematics and Computation in Music, MCM 2022, held in Atlanta, GA, USA, in June 2022. The 29 full papers and 8 short papers presented were carefully reviewed and selected from 45 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in Mathematical Scale and Rhythm Theory: Combinatorial, Graph Theoretic, Group Theoretic and Transformational Approaches; Categorical and Algebraic Approaches to Music; Algorithms and Modeling for Music and Music-Related Phenomena; Applications of Mathematics to Musical Analysis; Mathematical Techniques and Microtonality 
    more » « less