skip to main content


This content will become publicly available on November 16, 2024

Title: Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries
Abstract

Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs.

 
more » « less
Award ID(s):
2154145
NSF-PAR ID:
10474466
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Redox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.

     
    more » « less
  2. Abstract

    Bipolar organic materials have emerged as promising cathode materials for rechargeable batteries because of their high voltage and high capacity. However, they suffer from poor cyclic stability and slow reaction kinetics. In this work, we designed and synthesized two bipolar organic cathode materials, containing carbonyl (n‐type) and amine (p‐type) functional groups, as well as extended conjugation structures, for Na‐ion batteries (NIBs) and rechargeable aluminum batteries (RABs). As universal electrode materials, bipolar organic materials exhibited exceptional electrochemical performance in terms of high capacity, high voltage, long cycle life, and fast rate capability. The extended conjugation structures in backbones of the bipolar organic materials facilitate the π–π stacking with graphene, playing a critical role in the high performance. Furthermore, the formation of a stable and robust NaF‐rich cathode electrolyte interphase was shown to stabilize the bipolar organic cathode in NIBs. Electrochemical kinetic measurements reveal that both functional groups undergo reversible redox reactions. Specifically, the electron transfer rate constant of the p‐type amine group is one order of magnitude higher than that of the n‐type carbonyl group. These results highlight the efficacy of developing bipolar organic materials for achieving high‐performance organic cathode in NIBs and RABs.

     
    more » « less
  3. null (Ed.)
    A conjugated tetracarboxylate, 1,2,4,5-benzenetetracarboxylate sodium salt (Na 4 C 10 H 2 O 8 ), was designed and synthesized as an anode material in Na-ion batteries (NIBs). This organic compound shows low redox potentials (∼0.65 V), long cycle life (1000 cycles), and fast charging capability (up to 2 A g −1 ), demonstrating a promising organic anode for stable and sustainable NIBs. 
    more » « less
  4. null (Ed.)
    Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials in LIBs does not extend to NIBs because of the larger ion size of Na + than Li + and more complicated electrochemistry. Therefore, it is vital to search for high-performance electrode materials for NIBs. Organic electrode materials (OEMs) with the advantages of high structural tunability and abundant structural diversity show great promise in developing high-performance NIBs. To achieve advanced OEMs for NIBs, a fundamental understanding of the structure–performance correlation is desired for rational structure design and performance optimization. In this review, recent advances in developing OEMs for non-aqueous, aqueous, and all-solid-state NIBs are presented. The challenges, advantages, mechanisms, development, and applications of advanced OEMs in NIBs are also discussed. Perspectives for the innovation of structure design principle and future research direction of OEMs in non-aqueous, aqueous, and all-solid-state NIBs are provided. 
    more » « less
  5. Abstract

    The wide applications of rechargeable batteries require state‐of‐the‐art batteries that are sustainable (abundant resource), tolerant to high‐temperature operations, and excellent in delivering high capacity and long‐term cycling life. Due to the scarcity and uneven distribution of lithium, it is urgent to develop alternative rechargeable batteries. Herein, an organic compound, azobenzene‐4,4′‐dicarboxylic acid potassium salts (ADAPTS) is developed, with an azo group as the redox center for high performance potassium‐ion batteries (KIBs). The extended π‐conjugated structure in ADAPTS and surface reactions between ADAPTS and K‐ions enable the stable charge/discharge of K‐ion batteries even at high temperatures up to 60 °C. When operated at 50 °C, ADAPTS anode delivers a reversible capacity of 109 mAh g−1at 1C for 400 cycles. A reversible capacity of 77 mAh g−1is retained at 2C for 1000 cycles. At 60 °C, the ADAPTS‐based KIBs deliver a high capacity of 113 mAh g−1with 81% capacity retention at 2C after 80 cycles. The exceptional electrochemical performance demonstrates that ADAPTS is a promising electrode material for high‐temperature KIBs.

     
    more » « less