skip to main content


Title: Mirror twin boundaries in MoSe 2 monolayers as one dimensional nanotemplates for selective water adsorption
Water adsorption on transition metal dichalcogenides and other 2D materials is generally governed by weak van der Waals interactions. This results in a hydrophobic character of the basal planes, and defects may play a significant role in water adsorption and water cluster nucleation. However, there is a lack of detailed experimental investigations on water adsorption on defective 2D materials. Here, by combining low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, we study in that context the well-defined mirror twin boundary (MTB) networks separating mirror-grains in 2D MoSe 2 . These MTBs are dangling bond-free extended crystal modifications with metallic electronic states embedded in the 2D semiconducting matrix of MoSe 2 . Our DFT calculations indicate that molecular water also interacts similarly weak with these MTBs as with the defect-free basal plane of MoSe 2 . However, in low temperature STM experiments, nanoscopic water structures are observed that selectively decorate the MTB network. This localized adsorption of water is facilitated by functionalization of the MTBs by hydroxyls formed by dissociated water. Hydroxyls may form by dissociating of water at undercoordinated defects or adsorbing of radicals from the gas phase in the UHV chamber. Our DFT analysis indicates that the metallic MTBs adsorb these radicals much stronger than on the basal plane due to charge transfer from the metallic states into the molecular orbitals of the OH groups. Once the MTBs are functionalized with hydroxyls, molecular water can attach to them, forming water channels along the MTBs. This study demonstrates the role metallic defect states play in the adsorption of water even in the absence of unsaturated bonds that have been so far considered to be crucial for adsorption of hydroxyls or water.  more » « less
Award ID(s):
1801199
NSF-PAR ID:
10220348
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
2
ISSN:
2040-3364
Page Range / eLocation ID:
1038 to 1047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The adsorption and dissociation of water molecules on two-dimensional transition metal dichalcogenides (TMDs) is expected to be dominated by point defects, such as vacancies, and edges. At the same time, the role of grain boundaries, and particularly, mirror twinboundaries (MTBs), whose concentration in TMDs can be quite high, is not fully understood. Using density functional theory calculations, we investigate the interaction of water, hydroxyl groups, as well as oxygen and hydrogen molecules with MoSe 2 monolayers when MTBs of various types are present. We show that the adsorption of all species on MTBs is energetically favorable as compared to that on the basal plane of pristine MoSe 2 , but the interaction with Se vacancies is stronger. We further assess the energetics of various surface chemical reactions involving oxygen and hydrogen atoms. Our results indicate that water dissociation on the basal plane should be dominated by vacancies even when MTBs are present, but they facilitate water clustering through hydroxyl groups at MTBs, which can anchor water molecules and give rise to the decoration of MTBs with water clusters. Also, the presence of MTBs affects oxygen reduction reaction (ORR) on the MoSe 2 monolayer. Unlike Se vacancies which inhibit ORR due to a high overpotential, it is found that the ORR process on MTBs is more efficient, indicating their important role in the catalytic activity of MoSe 2 monolayer and likely other TMDs. 
    more » « less
  2. Abstract

    Edges and point defects in layered dichalcogenides are important for tuning their electronic and magnetic properties. By combining scanning tunneling microscopy (STM) with density functional theory (DFT), the electronic structure of edges and point defects in 2D‐PtSe2are investigated where the 1.8 eV bandgap of monolayer PtSe2facilitates the detailed characterization of defect‐induced gap states by STM. The stoichiometric zigzag edge terminations are found to be energetically favored. STM and DFT show that these edges exhibit metallic 1D states with spin polarized bands. Various native point defects in PtSe2are also characterized by STM. A comparison of the experiment with simulated images enables identification of Se‐vacancies, Pt‐vacancies, and Se‐antisites as the dominant defects in PtSe2. In contrast to Se‐ or Pt‐vacancies, the Se‐antisites are almost devoid of gap states. Pt‐vacancies exhibit defect induced states that are spin polarized, emphasizing their importance for inducing magnetism in PtSe2. The atomic‐scale insights into defect‐induced electronic states in monolayer PtSe2provide the fundamental underpinning for defect engineering of PtSe2‐monolayers and the newly identified spin‐polarized edge states offer prospects for engineering magnetic properties in PtSe2nanoribbons.

     
    more » « less
  3. Abstract

    Doping is a fundamental requirement for tuning and improving the properties of conventional semiconductors. Recent doping studies including niobium (Nb) doping of molybdenum disulfide (MoS2) and tungsten (W) doping of molybdenum diselenide (MoSe2) have suggested that substitutional doping may provide an efficient route to tune the doping type and suppress deep trap levels of 2D materials. To date, the impact of the doping on the structural, electronic, and photonic properties of in situ‐doped monolayers remains unanswered due to challenges including strong film substrate charge transfer, and difficulty achieving doping concentrations greater than 0.3 at%. Here, in situ rhenium (Re) doping of synthetic monolayer MoS2with ≈1 at% Re is demonstrated. To limit substrate film charge transfer,r‐plane sapphire is used. Electronic measurements demonstrate that 1 at% Re doping achieves nearly degenerate n‐type doping, which agrees with density functional theory calculations. Moreover, low‐temperature photoluminescence indicates a significant quench of the defect‐bound emission when Re is introduced, which is attributed to the MoO bond and sulfur vacancies passivation and reduction in gap states due to the presence of Re. The work presented here demonstrates that Re doping of MoS2is a promising route toward electronic and photonic engineering of 2D materials.

     
    more » « less
  4. Topological crystalline insulators (TCIs) are new materials with metallic surface states protected by crystal symmetry. The properties of molecular beam epitaxy grown SnTe TCI on SrTiO3(001) are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, low‐energy and reflection high‐energy electron diffraction, X‐ray diffraction, Auger electron spectroscopy, and density functional theory. Initially, SnTe (111) and (001) surfaces are observed; however, the (001) surface dominates with increasing film thickness. The films grow island‐by‐island with the [011] direction of SnTe (001) islands rotated up to 7.5° from SrTiO3[010]. Microscopy reveals that this growth mechanism induces defects on different length scales and dimensions that affect the electronic properties, including point defects (0D); step edges (1D); grain boundaries between islands rotated up to several degrees; edge‐dislocation arrays (2D out‐of‐plane) that serve as periodic nucleation sites for pit growth (2D in‐plane); and screw dislocations (3D). These features cause variations in the surface electronic structure that appear in STM images as standing wave patterns and a nonuniform background superimposed on atomic features. The results indicate that both the growth process and the scanning probe tip can be used to induce symmetry breaking defects that may disrupt the topological states in a controlled way.

     
    more » « less
  5. null (Ed.)
    CrBr 3 is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr 3 is in the range of 1.68–2.1 eV. However, controversial results have indicated that the band gap of CrBr 3 is possibly smaller than that. An unambiguous determination of the energy gap is critical to the correct interpretations of the experimental results of CrBr 3 . Here, we present the scanning tunneling microscopy and spectroscopy (STM/S) results of CrBr 3 thin and thick flakes exfoliated onto highly ordered pyrolytic graphite (HOPG) surfaces and density functional theory (DFT) calculations to reveal the small energy gap (peak-to-peak energy gap to be 0.57 ± 0.04 eV; or the onset signal energy gap to be 0.29 ± 0.05 eV from d I /d V spectra). Atomic resolution topography images show the defect-free crystal structure and the d I /d V spectra exhibit multiple peak features measured at 77 K. The conduction band – valence band peak pairs in the multi-peak d I /d V spectrum agree very well with all reported optical transitions. STM topography images of mono- and bi-layer CrBr 3 flakes exhibit edge degradation due to short air exposure (∼15 min) during sample transfer. The unambiguously determined small energy gap settles the controversy and is the key in better understanding CrBr 3 and similar materials. 
    more » « less