skip to main content


Title: Measuring Density-Driven Errors Using Kohn–Sham Inversion
Kohn–Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree–Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl– radical, illustrate just how accurate HF-DFT is.  more » « less
Award ID(s):
1856165
PAR ID:
10220561
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of chemical theory and computation
Issue:
16
ISSN:
1549-9626
Page Range / eLocation ID:
5014-5023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree–Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect. 
    more » « less
  2. Most torsional barriers are predicted with high accuracies (about 1 kJ/mol) by standard semilocal functionals, but a small subset was found to have much larger errors. We created a database of almost 300 carbon–carbon torsional barriers, including 12 poorly behaved barriers, that stem from the Y═C—X group, where Y is O or S and X is a halide. Functionals with enhanced exchange mixing (about 50%) worked well for all barriers. We found that poor actors have delocalization errors caused by hyperconjugation. These problematic calculations are density-sensitive (i.e., DFT predictions change noticeably with the density), and using HF densities (HF-DFT) fixes these issues. For example, conventional B3LYP performs as accurately as exchange-enhanced functionals if the HF density is used. For long-chain conjugated molecules, HF-DFT can be much better than exchange-enhanced functionals. We suggest that HF-PBE0 has the best overall performance. 
    more » « less
  3. Standard approximations for the exchange–correlation functional in Kohn–Sham density functional theory (KS-DFT) typically lead to unacceptably large errors when applied to strongly correlated electronic systems. Partition-DFT (PDFT) is a formally exact reformulation of KS-DFT in which the ground-state density and energy of a system are obtained through self-consistent calculations on isolated fragments, with a partition energy representing inter-fragment interactions. Here, we show how typical errors of the local density approximation (LDA) in KS-DFT can be largely suppressed through a simple approximation, the multi-fragment overlap approximation (MFOA), for the partition energy in PDFT. Our method is illustrated on simple models of one-dimensional strongly correlated linear hydrogen chains. The MFOA, when used in combination with the LDA for the fragments, improves LDA dissociation curves of hydrogen chains and produces results that are comparable to those of spin-unrestricted LDA, but without breaking the spin symmetry. MFOA also induces a correction to the LDA electron density that partially captures the correct density dimerization in strongly correlated hydrogen chains. Moreover, with an additional correction to the partition energy that is specific to the one-dimensional LDA, the approximation is shown to produce dissociation energies in quantitative agreement with calculations based on the density matrix renormalization group method.

     
    more » « less
  4. null (Ed.)
    A major challenge in density functional theory (DFT) is the development of density functional approximations (DFAs) to overcome errors in existing DFAs, leading to more complex functionals. For such functionals, we consider roles of the noninteracting reference systems. The electron density of the Kohn–Sham (KS) reference with a local potential has been traditionally defined as being equal to the electron density of the physical system. This key idea has been applied in two ways: the inverse calculation of such a local KS potential for the reference from a given density and the direct calculation of density and energy based on given DFAs. By construction, the inverse calculation can yield a KS reference with the density equal to the input density of the physical system. In application of DFT, however, it is the direct calculation of density and energy from a DFA that plays a central role. For direct calculations, we find that the self-consistent density of the KS reference defined by the optimized effective potential (OEP), is not the density of the physical system, when the DFA is dependent on the external potential. This inequality holds also for the density of generalized KS (GKS) or generalized OEP reference, which allows a nonlocal potential, when the DFA is dependent on the external potential. Instead, the density of the physical system, consistent with a given DFA, is given by the linear response of the total energy with respect to the variation of the external potential. This is a paradigm shift in DFT on the use of noninteracting references: the noninteracting KS or GKS references represent the explicit computational variables for energy minimization, but not the density of the physical system for external potential-dependent DFAs. We develop the expressions for the electron density so defined through the linear response for general DFAs, demonstrate the results for orbital functionals and for many-body perturbation theory within the second-order and the random-phase approximation, and explore the connections to developments in DFT. 
    more » « less
  5. In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules 
    more » « less