- Award ID(s):
- 1856165
- PAR ID:
- 10220443
- Date Published:
- Journal Name:
- The journal of physical chemistry letters
- Issue:
- 12
- ISSN:
- 1948-7185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree–Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.more » « less
-
Kohn–Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree–Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl– radical, illustrate just how accurate HF-DFT is.more » « less
-
Abstract The hafnium‐rich portion of the of the hafnium‐nitrogen phase diagram is dominated by a substoichiometric rocksalt HfN1‐x, the ζ‐Hf4N3−
x , the η‐Hf3N2−x , and the elemental Hf phase. The zeta and eta nitride phases have a close packed metal atom stacking sequence but their nitrogen atom ordering has yet to be concretely identified. With respect to the composition of these phases, recent computational studies of their phase stability using density functional theory (DFT) are not in agreement with reported experimental observations. In this work, we re‐examine the phase stability of the zeta and eta phases using DFT combined with enumerated searches using the known metal atom stacking sequences of these phases but with variable carbon concentration and ordering. We have found new structures for the zeta and eta phases that are now in better agreement with experimental findings. Furthermore, we report a new eta phase,‐Hf12N7, which lies on the convex hull and has a nitrogen atom ordering that is substantially different from the zeta phase. This work also demonstrates the importance of configurational entropy in dictating the finite temperature phase diagrams in this system. -
Recently, the application of transition metal mononitrides (TMNs) to plasmonics and nonlinear optics has grown at an astounding rate. TiN and ZrN have emerged as the dominating materials in this direction. However, even though ZrN is reported to have lower dielectric losses and enhanced tunability in plasmonic applications when compared with TiN, the body of work regarding TiN is much more mature than that of ZrN. This imbalance of work regarding ZrN may be in part an effect of pollution in precursor materials for the fabrication of ZrN, leading to an increased imaginary part of permittivity and frustration in reproduction of ZrN with literature‐like properties. Herein, the effects of Hf defects (a common pollutant in Zr) on the optical properties of nitride films grown with radio frequency (RF) magnetron sputtering are reported. Hf defects are introduced into nitride films with a sputtering target made of the Hf‐polluted “grade 702” Zr alloy. Hf defects are found in all analyzed films with concentrations at around ≈0.5−1 at %. Chemical, structural, and optical properties of RF magnetron‐sputtered Hf
x :Zry Nz films (x ≪y,z ) are characterized and discussed. -
We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory [SAPT(DFT)] description of monomers. The implementation adopts a density-fitting treatment of hybrid exchange–correlation kernels to enable the description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111 (2005)]. We have improved the algorithm by increasing numerical stability with QR factorization and optimized the computation of the exchange–correlation kernel with its 2-index density-fitted representation. The algorithm scales as O( N 5 ) formally and is usable for systems with up to ∼3000 basis functions, as demonstrated for the C 60 –buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials obtained from the local Hartree–Fock (LHF) method while avoiding the lower-scaling [ O( N 4 )] but iterative and sometimes hard-to-converge LHF process. The hybrid-kernel algorithm outperforms Hartree–Fock-based SAPT (SAPT0) for the S66 test set, and its accuracy is comparable to the many-body perturbation theory based SAPT2+ approach, which scales as O( N 7 ), although SAPT2+ exhibits a more narrow distribution of errors.more » « less