skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring complex phenotypes: A flexible high-throughput design for micro-respirometry.
Variation in tissue-specific metabolism between species and among individuals is thought to be adaptively important; however, understanding this evolutionary relationship requires reliably measuring this trait in many individuals. In most higher organisms, tissue specificity is important because different organs (heart, brain, liver, muscle) have unique ecologically adaptive roles. Current technology and methodology for measuring tissue-specific metabolism is costly and limited by throughput capacity and efficiency. Presented here is the design for a flexible and cost-effective high-throughput micro-respirometer (HTMR) optimized to measure small biological samples. To verify precision and accuracy, substrate specific metabolism was measured in heart ventricles isolated from a small teleost, Fundulus heteroclitus, and in yeast (Saccharomyces cerevisiae). Within the system, results were reproducible between chambers and over time with both teleost hearts and yeast. Additionally, metabolic rates and allometric scaling relationships in Fundulus agree with previously published data measured with lower-throughput equipment. This design reduces cost, but still provides an accurate measure of metabolism in small biological samples. This will allow for high-throughput measurement of tissue metabolism that can enhance understanding of the adaptive importance of complex metabolic traits.  more » « less
Award ID(s):
1754437 1556396
PAR ID:
10220602
Author(s) / Creator(s):
Date Published:
Journal Name:
bioRxiv
Volume:
2020
Page Range / eLocation ID:
2020.03.16.993550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries. 
    more » « less
  2. By investigating evolutionary adaptations that change physiological functions, we can enhance our understanding of how organisms work, the importance of physiological traits, and the genes that influence these traits. This approach of investigating the evolution of physiological adaptation has been used with the teleost fish Fundulus heteroclitus and has produced insights into (i) how protein polymorphisms enhance swimming and development; (ii) the role of equilibrium enzymes in modulating metabolic flux; (iii) how variation in DNA sequences and mRNA expression patterns mitigate changes in temperature, pollution, and salinity; and (iv) the importance of nuclear-mitochondrial genome interactions for energy metabolism. Fundulus heteroclitus provides so many examples of adaptive evolution because their local population sizes are large, they have significant standing genetic variation, and they experience large ranges of environmental conditions that enhance the likelihood that adaptive evolution will occur. Thus, F. heteroclitus research takes advantage of evolutionary changes associated with exposure to diverse environments, both across the North American Atlantic coast and within local habitats, to contrast neutral versus adaptive divergence. Based on evolutionary analyses contrasting neutral and adaptive evolution in F. heteroclitus populations, we conclude that adaptive evolution can occur readily and rapidly, at least in part because it depends on large amounts of standing genetic variation among many genes that can alter physiological traits. These observations of polygenic adaptation enhance our understanding of how evolution and physiological adaptation progresses, thus informing both biological and medical scientists about genotype-phenotype relationships 
    more » « less
  3. ABSTRACT Physiology defines individual responses to global climate change and species distributions across environments. Physiological responses are driven by temperature on three time scales: acute, acclimatory and evolutionary. Acutely, passive temperature effects often dictate an expected 2-fold increase in metabolic processes for every 10°C change in temperature (Q10). Yet, these acute responses often are mitigated through acclimation within an individual or evolutionary adaptation within populations over time. Natural selection can influence both responses and often reduces interindividual variation towards an optimum. However, this interindividual physiological variation is not well characterized. Here, we quantified responses to a 16°C temperature difference in six physiological traits across nine thermally distinct Fundulus heteroclitus populations. These traits included whole-animal metabolism (WAM), critical thermal maximum (CTmax) and substrate-specific cardiac metabolism measured in approximately 350 individuals. These traits exhibited high variation among both individuals and populations. Thermal sensitivity (Q10) was determined, specifically as the acclimated Q10, in which individuals were both acclimated and assayed at each temperature. The interindividual variation in Q10 was unexpectedly large: ranging from 0.6 to 5.4 for WAM. Thus, with a 16°C difference, metabolic rates were unchanged in some individuals, while in others they were 15-fold higher. Furthermore, a significant portion of variation was related to habitat temperature. Warmer populations had a significantly lower Q10 for WAM and CTmax after acclimation. These data suggest that individual variation in thermal sensitivity reflects different physiological strategies to respond to temperature variation, providing many different adaptive responses to changing environments. 
    more » « less
  4. Abstract Branched-chain amino acid (BCAA) metabolism fulfills numerous physiological roles and can be harnessed to produce valuable chemicals. However, the lack of eukaryotic biosensors specific for BCAA-derived products has limited the ability to develop high-throughput screens for strain engineering and metabolic studies. Here, we harness the transcriptional regulator Leu3p fromSaccharomyces cerevisiaeto develop a genetically encoded biosensor for BCAA metabolism. In one configuration, we use the biosensor to monitor yeast production of isobutanol, an alcohol derived from valine degradation. Small modifications allow us to redeploy Leu3p in another biosensor configuration that monitors production of the leucine-derived alcohol, isopentanol. These biosensor configurations are effective at isolating high-producing strains and identifying enzymes with enhanced activity from screens for branched-chain higher alcohol (BCHA) biosynthesis in mitochondria as well as cytosol. Furthermore, this biosensor has the potential to assist in metabolic studies involving BCAA pathways, and offers a blueprint to develop biosensors for other products derived from BCAA metabolism. 
    more » « less
  5. Abstract Microbial production of cannabinoids promises to provide a consistent, cheaper, and more sustainable supply of these important therapeutic molecules. However, scaling production to compete with traditional plant-based sources is challenging. Our ability to make strain variants greatly exceeds our capacity to screen and identify high producers, creating a bottleneck in metabolic engineering efforts. Here, we present a yeast-based biosensor for detecting microbially produced Δ9-tetrahydrocannabinol (THC) to increase throughput and lower the cost of screening. We port five human cannabinoid G protein-coupled receptors (GPCRs) into yeast, showing the cannabinoid type 2 receptor, CB2R, can couple to the yeast pheromone response pathway and report on the concentration of a variety of cannabinoids over a wide dynamic and operational range. We demonstrate that our cannabinoid biosensor can detect THC from microbial cell culture and use this as a tool for measuring relative production yields from a library of Δ9-tetrahydrocannabinol acid synthase (THCAS) mutants. 
    more » « less