Abstract Efficient doping of polymer semiconductors is required for high conductivity and efficient thermoelectric performance. Lewis acids, e.g., B(C6F5)3, have been widely employed as dopants, but the mechanism is not fully understood. 1:1 “Wheland type” or zwitterionic complexes of B(C6F5)3are created with small conjugated molecules 3,6‐bis(5‐(7‐(5‐methylthiophen‐2‐yl)‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)thiophen‐2‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(EDOT)2] and 3,6‐bis(5''‐methyl‐[2,2':5',2''‐terthiophen]‐5‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(Th)2]. Using a wide variety of experimental and computational approaches, the doping ability of these Wheland Complexes with B(C6F5)3are characterized for five novel diketopyrrolopyrrole‐ethylenedioxythiophene (DPP‐EDOT)‐based conjugated polymers. The electrical properties are a strong function of the specific conjugated molecule constituting the adduct, rather than acidic protons generated via hydrolysis of B(C6F5)3, serving as the oxidant. It is highly probable that certain repeat units/segments form adduct structures inp‐type conjugated polymers which act as intermediates for conjugated polymer doping. Electronic and optical properties are consistent with the increase in hole‐donating ability of polymers with their cumulative donor strengths. The doped film of polymer (DPP(EDOT)2‐(EDOT)2) exhibits exceptionally good thermal and air‐storage stability. The highest conductivities, ≈300 and ≈200 S cm−1, are achieved for DPP(EDOT)2‐(EDOT)2doped with B(C6F5)3and its Wheland complexes. 
                        more » 
                        « less   
                    
                            
                            Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning
                        
                    
    
            Abstract Herein we introduce a facile, solution‐phase protocol to modify the Lewis basic surface of few‐layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft‐ness are evaluated. The nature of the interaction between the Lewis acids and thebP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X‐ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation ofbP (>84 h for AlBr3), and the resulting field‐effect transistors show excellentIVcharacteristics, photocurrent, and current stability, and are significantly p‐doped. This protocol, chemically matched tobP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties inbP. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1719797
- PAR ID:
- 10220731
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 15
- ISSN:
- 1433-7851
- Format(s):
- Medium: X Size: p. 8329-8336
- Size(s):
- p. 8329-8336
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Charge‐separated metal–organic frameworks (MOFs) are a unique class of MOFs that can possess added properties originating from the exposed ionic species. A new charge‐separated MOF, namely, UNM‐6 synthesized from a tetrahedral borate ligand and Co2+cation is reported herein. UNM‐6 crystalizes into the highly symmetricP43nspace group with fourfold interpenetration, despite the stoichiometric imbalance between the B and Co atoms, which also leads to loosely bound NO3−anions within the crystal structure. These NO3−ions can be quantitatively exchanged with various other anions, leading to Lewis acid (Co2+) and Lewis base (anions) pairs within the pores and potentially cooperative catalytic activities. For example, UNM‐6‐Br, the MOF after anion exchange with Br−anions, displays high catalytic activity and stability in reactions of CO2chemical fixation into cyclic carbonates.more » « less
- 
            Abstract The synthesis of tris(ortho‐carboranyl)borane (BoCb3), a single site neutral Lewis superacid, in one pot from commercially available materials is achieved. The high fluoride ion affinity (FIA) confirms its classification as a Lewis superacid and the Gutmann‐Beckett method as well as adducts with Lewis bases indicate stronger Lewis acidity over the widely used fluorinated aryl boranes. The electron withdrawing effect ofortho‐carborane and lack of pi‐delocalization of the LUMO rationalize the unusually high Lewis acidity. Catalytic studies indicate that BoCb3is a superior catalyst for promoting C−F bond functionalization reactions than tris(pentafluorophenyl)borane [B(C6F5)3].more » « less
- 
            Abstract Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low‐powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution‐processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air‐sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low‐powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
