skip to main content

Title: Synthesis, Bottom up Assembly and Thermoelectric Properties of Sb-Doped PbS Nanocrystal Building Blocks
The precise engineering of thermoelectric materials using nanocrystals as their building blocks has proven to be an excellent strategy to increase energy conversion efficiency. Here we present a synthetic route to produce Sb-doped PbS colloidal nanoparticles. These nanoparticles are then consolidated into nanocrystalline PbS:Sb using spark plasma sintering. We demonstrate that the introduction of Sb significantly influences the size, geometry, crystal lattice and especially the carrier concentration of PbS. The increase of charge carrier concentration achieved with the introduction of Sb translates into an increase of the electrical and thermal conductivities and a decrease of the Seebeck coefficient. Overall, PbS:Sb nanomaterial were characterized by two-fold higher thermoelectric figures of merit than undoped PbS.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems. 
    more » « less
  2. Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system. 
    more » « less
  3. Abstract

    Highly resistive grain boundaries significantly reduce the electrical conductivity that compromises the thermoelectric figure‐of‐meritzTin n‐type polycrystalline Mg3Sb2. In this work, discovered is a Mg deficiency near grain boundaries using atom‐probe tomography. Approximately 5 at% of Mg deficiency is observed uniformly in a 10 nm region along the grain boundary without any evidence of a stable secondary or impurity phase. The off‐stoichiometry can prevent n‐type dopants from providing electrons, lowering the local carrier concentration near the grain boundary and thus the local conductivity. This observation explains how nanometer scale compositional variations can dramatically determine thermoelectriczT, and provides concrete strategies to reduce grain‐boundary resistance and increasezTin Mg3Sb2‐based materials.

    more » « less
  4. Abstract

    The thermoelectric material ZnSb utilizes elements that are inexpensive, abundant, and viable for mass production. While a high thermoelectric figure of meritzT, is difficult to achieve in Sn‐doped ZnSb, it is shown that this obstacle is primarily due to shortcomings in reaching high enough carrier concentrations. Sn‐doped samples prepared in different equilibrium phase spaces in the ternary Zn‐Sb‐Sn system are investigated using phase boundary mapping, and a range of achievable carrier concentrations is found in the doped samples. The sample with the highestzTin this study, which is obtained with a carrier concentration of 2 × 1019 cm−3when the material is in equilibrium with Zn4Sb3and Sn, confirms that the doping efficiency can be controlled by preparing the doped sample in a particular region of the thermodynamic phase diagram. Moreover, density functional theory calculations suggest that the doping efficiency is limited by the solubility of Sn in ZnSb, as opposed to compensation from native defects. Cognizance of thermodynamic conditions is therefore crucial for rationally tuning the carrier concentration, a quantity that is significant for many areas of semiconductor technologies.

    more » « less
  5. The intermetallic compound ZnSb is a (II‐V) narrow gap semiconductor with interesting thermoelectric properties. Electrical resistivity, Hall coefficient, thermopower and thermal conductivity were measured up to 400 K on Ag‐doped samples with concentrations 0.2, 0.5, 1, 2, and 3 at.%, which were consolidated to densities in excess of 99.5 % by spark plasma sintering. The work confirms a huge improvement of the thermoelectric Figure‐of‐merit,ZT, upon Ag doping. The optimum doping level is near 0.5 at.% Ag and results inZTvalues around 1.05 at 390 K. The improvement stems from a largely decreased resistivity, which in turn relates to an increase of the hole charge carrier concentration by two orders of magnitude. It is argued that Ag can replace minute concentrations of Zn (on the order of 0.2 at.%) in the crystal structure which enhances the intrinsic impurity band of ZnSb. Excess Ag was found to segregate in grain boundaries. So the best performing material may be considered as a composite Zn~0.998Ag~0.002Sb/Ag~0.003.

    more » « less