Measuring the entanglement complexity of collections of open curves in 3-space has been an intractable, yet pressing mathematical problem, relevant to a plethora of physical systems, such as in polymers and biopolymers. In this manuscript, we give a novel definition of the Jones polynomial that generalizes the classic Jones polynomial to collections of open curves in 3-space. More precisely, first we provide a novel definition of the Jones polynomial of linkoids (open link diagrams) and show that this is a well-defined single variable polynomial that is a topological invariant, which, for link-type linkoids, coincides with that of the corresponding link. Using the framework introduced in (Panagiotou E, Kauffman L. 2020 Proc. R. Soc. A 476 , 20200124. (( doi:10.1098/rspa.2020.0124 )), this enables us to define the Jones polynomial of collections of open and closed curves in 3-space. For collections of open curves in 3-space, the Jones polynomial has real coefficients and it is a continuous function of the curves’ coordinates. As the endpoints of the curves tend to coincide, the Jones polynomial tends to that of the resultant link. We demonstrate with numerical examples that the novel Jones polynomial enables us to characterize the topological/geometrical complexity of collections of open curves in 3-space for the first time.
more »
« less
Open knots
The goal of this chapter is to describe different techniques used to measure knotting in open curves. Note that there is no "agreed upon" definition for describing knotting in open curves. As a result, we describe the context motivating each definition and then describe some advantages and disadvantages of the different approaches.
more »
« less
- PAR ID:
- 10220789
- Editor(s):
- Adams, Colin; Flapan, Erica; Henrich, Allison; Kauffman, Louis H; Ludwing, Lewis D; Nelson, Sam
- Date Published:
- Journal Name:
- Encyclopedia of knot theory
- Page Range / eLocation ID:
- 859-874
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biopolymers, like chromatin, are often confined in small volumes. Confinement has a great effect on polymer conformations, including polymer entanglement. Polymer chains and other filamentous structures can be represented by polygonal curves in three-space. In this manuscript, we examine the topological complexity of polygonal chains in three-space and in confinement as a function of their length. We model polygonal chains by equilateral random walks in three-space and by uniform random walks (URWs) in confinement. For the topological characterization, we use the second Vassiliev measure. This is an integer topological invariant for polygons and a continuous functions over the real numbers, as a function of the chain coordinates for open polygonal chains. For URWs in confined space, we prove that the average value of the Vassiliev measure in the space of configurations increases as O ( n 2 ) with the length of the walks or polygons. We verify this result numerically and our numerical results also show that the mean value of the second Vassiliev measure of equilateral random walks in three-space increases as O ( n ). These results reveal the rate at which knotting of open curves and not simply entanglement are affected by confinement.more » « less
-
null (Ed.)In this manuscript, we introduce a method to measure entanglement of curves in 3-space that extends the notion of knot and link polynomials to open curves. We define the bracket polynomial of curves in 3-space and show that it has real coefficients and is a continuous function of the curve coordinates. This is used to define the Jones polynomial in a way that it is applicable to both open and closed curves in 3-space. For open curves, the Jones polynomial has real coefficients and it is a continuous function of the curve coordinates and as the endpoints of the curve tend to coincide, the Jones polynomial of the open curve tends to that of the resulting knot. For closed curves, it is a topological invariant, as the classical Jones polynomial. We show how these measures attain a simpler expression for polygonal curves and provide a finite form for their computation in the case of polygonal curves of 3 and 4 edges.more » « less
-
We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range, joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases source and target dimensions by one.more » « less
-
In this article, we define Vassiliev measures of complexity for open curves in 3-space. These are related to the coefficients of the enhanced Jones polynomial of open curves in 3-space. These Vassiliev measures are continuous functions of the curve coordinates; as the ends of the curve tend to coincide, they converge to the corresponding Vassiliev invariants of the resulting knot. We focus on the second Vassiliev measure from the enhanced Jones polynomial for closed and open curves in 3-space. For closed curves, this second Vassiliev measure can be computed by a Gauss code diagram and it has an integral formulation, the double alternating self-linking integral. The double alternating self-linking integral is a topological invariant of closed curves and a continuous function of the curve coordinates for open curves in 3-space. For polygonal curves, the double alternating self-linking integral obtains a simpler expression in terms of geometric probabilities.more » « less
An official website of the United States government

