skip to main content

Title: Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways
Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals more » from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep–wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better – and perhaps more specific – treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Study Objectives We determine if young people with narcolepsy type 1 (NT1), narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH) have distinct nocturnal sleep stability phenotypes compared to subjectively sleepy controls. Methods Participants were 5- to 21-year old and drug-naïve or drug free: NT1 (n = 46), NT2 (n = 12), IH (n = 18), and subjectively sleepy controls (n = 48). We compared the following sleep stability measures from polysomnogram recording between each hypersomnolence disorder to subjectively sleepy controls: number of wake and sleep stage bouts, Kaplan–Meier survival curves for wake and sleep stages, and median bout durations. Results Compared to the subjectively sleepy control group, NT1 participants had more bouts of wake and all sleep stages (p ≤ .005) except stage N3. NT1 participants had worse survival of nocturnal wake, stage N2, and rapid eye movement (REM) bouts (p < .005). In the first 8 hours of sleep, NT1 participants had longer stage N1 bouts but shorter REM (all ps < .004). IH participants had a similar number of bouts but better survival of stage N2 bouts (p = .001), and shorter stage N3 bouts in the first 8 hours of sleep (p = .003). In contrast,more »NT2 participants showed better stage N1 bout survival (p = .006) and longer stage N1 bouts (p = .02). Conclusions NT1, NT2, and IH have unique sleep physiology compared to subjectively sleepy controls, with only NT1 demonstrating clear nocturnal wake and sleep instability. Overall, sleep stability measures may aid in diagnoses and management of these central nervous system disorders of hypersomnolence.« less
  2. About one in 3,500 people have a genetic disorder called neurofibromatosis type 1, often shortened to NF1, making it one of the most common inherited diseases. People with NF1 may have benign and cancerous tumors throughout the body, learning disabilities, developmental delays, curvature of the spine and bone abnormalities. Children with NF1 often experience difficulties with attention, hyperactivity, speech and language delays and impulsivity. They may also have autism spectrum disorder, or display symptoms associated with this condition. Studies in mice with a genetic mutation that mimics NF1 suggest that abnormal development in cells in the middle of the brain may cause the cognitive symptoms. These midbrain neurons produce a chemical called dopamine and send it throughout the brain. Dopamine is essential for concentration and it is involved in how the brain processes pleasurable experiences. Now, Robinson et al. show that, at rest, the NF1 model mice release dopamine less often than typical mice. This happens because, when there are no stimuli to respond to, neighboring cells slow down the activity of dopamine-producing neurons in NF1 model mice. In the experiments, both NF1 model mice and typical mice were taught to associate environmental cues with rewards or punishments. Robinson etmore »al. then measured the release of dopamine in the mice using a sensor called dLight1, which produces different intensities of fluorescent light depending on the amount of dopamine present. This revealed that the NF1 model mice produced more dopamine in response to visual cues and had enhanced behavioral responses to these stimuli. For example, when a looming disc that mimics predators approached them from above, the NF1 model mice tried to hide in an exaggerated way compared to the typical mice. Previously, it had been shown that this type of behavior is due to the activity of the dopamine-producing neurons' neighboring cells, which Robinson et al. found is greater in NF1 model mice. Next, Robinson et al. stopped neighboring cells from interfering with the dopamine-producing neurons in NF1 model mice. This restored dopamine release to normal levels at rest, and stopped the mice from overreacting to the looming disc. The experiments help explain how the NF1 model mice process visual information. Further study of the role dopamine plays in cognitive symptoms in people with NF1 may help scientists develop treatments for the condition.« less
  3. Most animals develop from juveniles, which cannot reproduce, to sexually mature adults. The most obvious signs of this transition are changes in body shape and size. However, changes also take place in the brain that enable the animals to adapt their behavior to the demands of adulthood. For example, fully fed adult male roundworms will leave a food source to search for mates, whereas juvenile males will continue feeding. The transition to sexual maturity needs to be carefully timed. Too early, and the animal risks compromising key stages of development. Too late, and the animal may be less competitive in the quest for reproductive success. Cues in the environment, such as the presence of food and mates, interact with timing mechanisms in the brain to trigger sexual maturity. But how these mechanisms work – in particular where and how an animal keeps track of its developmental stage – is not well understood. In the roundworm species Caenorhabditis elegans, waves of gene activity, known collectively as the heterochronic pathway, determine patterns of cell growth as animals mature. Through further studies of these worms, Lawson et al. now show that these waves also control the time at which neural circuits mature. Inmore »addition, the waves of activity occur inside the nervous system itself, rather than in a tissue that sends signals to the nervous system. Moreover, they occur independently inside many different neurons. Each neuron thus has its own molecular clock for keeping track of development. Several of the genes critical for developmental timekeeping in worms are also found in mammals, including two genes that help to control when puberty starts in humans. If one of these genes – called MKRN3 – does not work correctly, it can lead to a condition that causes individuals to go through puberty several years earlier than normal. Studying the mechanisms identified in roundworms may help us to better understand this disorder. More generally, future work that builds on the results presented by Lawson et al. will help to reveal how environmental cues and gene activity interact to control when we become adults.« less
  4. The approximately 100 billion neurons in our brain are responsible for everything we do and experience. Experiments aimed at discovering how these cells encode and process information generate vast amounts of data. These data span multiple scales, from interactions between individual molecules to coordinated waves of electrical activity that spread across the entire brain surface. To understand how the brain works, we must combine and make sense of these diverse types of information. Computational modeling provides one way of doing this. Using equations, we can calculate the chemical and electrical changes that take place in neurons. We can then build models of neurons and neural circuits that reproduce the patterns of activity seen in experiments. Exploring these models can provide insights into how the brain itself works. Several software tools are available to simulate neural circuits, but none provide an easy way of incorporating data that span different scales, from molecules to cells to networks. Moreover, most of the models require familiarity with computer programming. Dura-Bernal et al. have now developed a new software tool called NetPyNE, which allows users without programming expertise to build sophisticated models of brain circuits. It features a user-friendly interface for defining the properties ofmore »the model at molecular, cellular and circuit scales. It also provides an easy and automated method to identify the properties of the model that enable it to reproduce experimental data. Finally, NetPyNE makes it possible to run the model on supercomputers and offers a variety of ways to visualize and analyze the resulting output. Users can save the model and output in standardized formats, making them accessible to as many people as possible. Researchers in labs across the world have used NetPyNE to study different brain regions, phenomena and diseases. The software also features in courses that introduce students to neurobiology and computational modeling. NetPyNE can help to interpret isolated experimental findings, and also makes it easier to explore interactions between brain activity at different scales. This will enable researchers to decipher how the brain encodes and processes information, and ultimately could make it easier to understand and treat brain disorders.« less
  5. A new housing development in a familiar neighborhood, a wrong turn that ends up lengthening a Sunday stroll: our internal representation of the world requires constant updating, and we need to be able to associate events separated by long intervals of time to finetune future outcome. This often requires neural connections to be altered. A brain region known as the hippocampus is involved in building and maintaining a map of our environment. However, signals from other brain areas can activate silent neurons in the hippocampus when the body is in a specific location by triggering cellular events called dendritic calcium spikes. Milstein et al. explored whether dendritic calcium spikes in the hippocampus could also help the brain to update its map of the world by enabling neurons to stop being active at one location and to start responding at a new position. Experiments in mice showed that calcium spikes could change which features of the environment individual neurons respond to by strengthening or weaking connections between specific cells. Crucially, this mechanism allowed neurons to associate event sequences that unfold over a longer timescale that was more relevant to the ones encountered in day-to-day life. A computational model was then putmore »together, and it demonstrated that dendritic calcium spikes in the hippocampus could enable the brain to make better spatial decisions in future. Indeed, these spikes are driven by inputs from brain regions involved in complex cognitive processes, potentially enabling the delayed outcomes of navigational choices to guide changes in the activity and wiring of neurons. Overall, the work by Milstein et al. advances the understanding of learning and memory in the brain and may inform the design of better systems for artificial learning.« less